1. 哈希表的概念
哈希表(Hash Table)也叫散列表,是根据关键码值(Key Value)而直接进行访问的数据结构。它通过把关键码值映射到哈希表中的一个位置来访问记录,以加快查找的速度。这个映射函数就做散列函数,存放记录的数组叫做散列表。
2. 散列存储的基本思路
以数据中每个元素的关键字K为自变量,通过散列函数H(k)计算出函数值,以该函数值作为一块连续存储空间的的单元地址,将该元素存储到函数值对应的单元中。
3. 哈希表查找的时间复杂度
哈希表存储的是键值对,其查找的时间复杂度与元素数量多少无关,哈希表在查找元素时是通过计算哈希码值来定位元素的位置从而直接访问元素的,因此,哈希表查找的时间复杂度为O(1)。
4. 哈希函数的构造方法
哈希表处理冲突主要有开房寻址法、再散列法、链地址法(拉链法)和建立一个公共溢出区四种方法。
(1) 直接寻址法
取关键字或者关键字的某个线性函数值作为哈希地址,即H(Key)=Key或者H(Key)=a*Key+b(a,b为整数),这种散列函数也叫做自身函数.如果H(Key)的哈希地址上已经有值了,那么就往下一个位置找,知道找到H(Key)的位置没有值了就把元素放进去.
(2) 数字分析法
分析一组数据,比如一组员工的出生年月,这时我们发现出生年月的前几位数字一般都相同,因此,出现冲突的概率就会很大,但是我们发现年月日的后几位表示月份和具体日期的数字差别很大,如果利用后面的几位数字来构造散列地址,则冲突的几率则会明显降低.因此数字分析法就是找出数字的规律,尽可能利用这些数据来构造冲突几率较低的散列地址.
(3)平方取中法
取关键字平方后的中间几位作为散列地址.
(4)折叠法
折叠法即将关键字分割成位数相同的几部分,最后一部分位数可以不同,然后取这几部分的叠加和(注意:叠加和时去除进位)作为散列地址.数位叠加可以有移位叠加和间界叠加两种方法.移位叠加是将分割后的每一部分的最低位对齐,然后相加;间界叠加是从一端向另一端沿分割界来回折叠,然后对齐相加.
(5) 随机数法
选择一个随机数,去关键字的随机值作为散列地址,通常用于关键字长度不同的场合.
(7) 除留余数法
取关键字被某个不大于散列表表长m的数p除后所得的余数为散列地址.即H(Key)=Key MOD p,p<=m.不仅可以对关键字直接取模,也可在折叠、平方取中等运算之后取模。对p的选择很重要,一般取素数或m,若p选得不好,则很容易产生冲突。
5. 哈希表如何处理冲突
哈希表处理冲突主要有开放寻址法、再散列法、链地址法(拉链法)和建立一个公共溢出区四种方法。
通过构造性能良好的哈希函数,可以减少冲突,但一般不可能完全避免冲突,因此解决冲突是哈希法的另一个关键问题。创建哈希表和查找哈希表都会遇到冲突,两种情况下解决冲突的方法应该一致。下面以创建哈希表为例,说明解决冲突的方法。常用的解决冲突方法有以下四种:
(1)开放定址法
这种方法也称再散列法,其基本思想是:当关键字key的哈希地址p=H(key)出现冲突时,以p为基础,产生另一个哈希地址p1,如果p1仍然冲突,再以p为基础,产生另一个哈希地址p2,…,直到找出一个不冲突的哈希地址pi ,将相应元素存入其中。这种方法有一个通用的再散列函数形式:Hi=(H(key)+di)%m i=1,2,…,n,其中H(key)为哈希函数,m 为表长,di称为增量序列。增量序列的取值方式不同,相应的再散列方式也不同。主要有以下三种:
(1) 线性探测再散列
di=1,2,3,…,m-1
这种方法的特点是:冲突发生时,顺序查看表中下一单元,直到找出一个空单元或查遍全表。
(2)二次探测再散列
di=12,-12,22,-22,…,k2,-k2 ( k<=m/2)
这种方法的特点是:冲突发生时,在表的左右进行跳跃式探测,比较灵活。
(3)伪随机探测再散列
di=伪随机数序列。
具体实现时,应建立一个伪随机数发生器,(如i=(i+p) % m),并给定一个随机数做起点。
例如,已知哈希表长度m=11,哈希函数为:H(key)= key % 11,则H(47)=3,H(26)=4,H(60)=5,假设下一个关键字为69,则H(69)=3,与47冲突。如果用线性探测再散列处理冲突,下一个哈希地址为H1=(3 + 1)% 11 = 4,仍然冲突,再找下一个哈希地址为H2=(3 + 2)% 11 = 5,还是冲突,继续找下一个哈希地址为H3=(3 + 3)% 11 = 6,此时不再冲突,将69填入5号单元。如果用二次探测再散列处理冲突,下一个哈希地址为H1=(3 + 12)% 11 = 4,仍然冲突,再找下一个哈希地址为H2=(3 - 12)% 11 = 2,此时不再冲突,将69填入2号单元。如果用伪随机探测再散列处理冲突,且伪随机数序列为:2,5,9,……..,则下一个哈希地址为H1=(3 + 2)% 11 = 5,仍然冲突,再找下一个哈希地址为H2=(3 + 5)% 11 = 8,此时不再冲突,将69填入8号单元。
从上述例子可以看出,线性探测再散列容易产生“二次聚集”,即在处理同义词的冲突时又导致非同义词的冲突。例如,当表中i, i+1 ,i+2三个单元已满时,下一个哈希地址为i, 或i+1 ,或i+2,或i+3的元素,都将填入i+3这同一个单元,而这四个元素并非同义词。线性探测再散列的优点是:只要哈希表不满,就一定能找到一个不冲突的哈希地址,而二次探测再散列和伪随机探测再散列则不一定。
2.再哈希法
这种方法是同时构造多个不同的哈希函数:
Hi=RH1(key),i=1,2,3,…,n.
当哈希地址Hi=RH1(key)发生冲突时,再计算Hi=RH2(key)……,直到冲突不再产生。这种方法不易产生聚集,但增加了计算时间。
3.链地址法
这种方法的基本思想是将所有哈希地址为i的元素构成一个称为同义词链的单链表,并将单链表的头指针存在哈希表的第i个单元中,因而查找、插入和删除主要在同义词链中进行。若选定的散列表长度为m,则可将散列表定义为一个由m个头指针组成的指针数组T[0..m-1]。凡是散列地址为i的结点,均插入到以T[i]为头指针的单链表中。T中各分量的初值均应为空指针。链地址法适用于经常进行插入和删除的情况。
例如,已知一组关键字(32,40,36,53,16,46,71,27,42,24,49,64),哈希表长度为13,哈希函数为:H(key)= key % 13,则用链地址法处理冲突的结果如图8.27所示:
图8.27 链地址法处理冲突时的哈希表
本例的平均查找长度 ASL=(1*7+2*4+3*1)/12=1.5
拉链法的优点
与开放定址法相比,拉链法有如下几个优点:
(1)拉链法处理冲突简单,且无堆积现象,即非同义词决不会发生冲突,因此平均查找长度较短;
(2)由于拉链法中各链表上的结点空间是动态申请的,故它更适合于造表前无法确定表长的情况;
(3)开放定址法为减少冲突,要求装填因子α较小,故当结点规模较大时会浪费很多空间。而拉链法中可取α≥1,且结点较大时,拉链法中增加的指针域可忽略不计,因此节省空间;
(4)在用拉链法构造的散列表中,删除结点的操作易于实现。只要简单地删去链表上相应的结点即可。而对开放地址法构造的散列表,删除结点不能简单地将被删结点的空间置为空,否则将截断在它之后填入散列表的同义词结点的查找路径。这是因为各种开放地址法中,空地址单元(即开放地址)都是查找失败的条件。 因此在用开放地址法处理冲突的散列表上执行删除操作,只能在被删结点上做删除标记,而不能真正删除结点。
拉链法的缺点
拉链法的缺点是:指针需要额外的空间,故当结点规模较小时,开放定址法较为节省空间,而若将节省的指针空间用来扩大散列表的规模,可使装填因子变小,这又减少了开放定址法中的冲突,从而提高平均查找速度。
4、建立公共溢出区
这种方法的基本思想是:将哈希表分为基本表和溢出表两部分,凡是和基本表发生冲突的元素,一律填入溢出表.(注意:在这个方法里面是把元素分开两个表来存储)
(以上分析出自http://blog.csdn.net/chenhuajie123/article/details/9210529)
5. 自己编写的程序:
冲突用链表解决
#include
#ifndef _HASHTABLE_
#define _HASHTABLE_
#include#include #include
using namespace std;
typedef int KeyType;
class HashTable
{
private:
int count;listcontainer[10]; int HashFunction(const int& v);
public:
HashTable();~HashTable();void Insert(const int& e);bool Find(const int& e);bool Delete(const int& e);int Count();
};
int HashTable::HashFunction(const int& v)
{
return v % 10;
}
HashTable::HashTable()
{
count = 0;
}
HashTable::~HashTable()
{
count = 0;for(int i=0;i<10;i++){
container[i].clear();
}}void HashTable::Insert(const int& e)
{
int p = HashTable::HashFunction(e);container[p].push_back(e);count++;
}
bool HashTable::Find(const int& e)
{
int p = HashTable::HashFunction(e);list::const_iterator it = find(container[p].begin(), container[p].end(), e); if( it != container[p].end()){
return true;
}elsereturn false;
}
bool HashTable::Delete(const int& e)
{
int p = HashTable::HashFunction(e);list::const_iterator it = find(container[p].begin(), container[p].end(), e); if( it != container[p].end()){
container[p].erase(it);count--;return true;
}else
return false;
}
int HashTable::Count()
{
return count;
}
#endif
int main()
{
HashTable h;h.Insert(234);h.Insert(567);h.Insert(987);h.Insert(222);h.Insert(564);h.Insert(111);h.Delete(234);cout << "Is 234 exist? " << h.Find(234) << endl;cout << "Is 111 exist? " << h.Find(111) << endl;cout << "Total count:" << h.Count() << endl;system("PAUSE");return 0;
}