Description
Here is a circle sequence S of length n, and you can choose a position and remove the number on it.
After that,you will get a integer. More formally,you choose a number x( 1<=x<=n ),then you will get the integer Rx = Sx+1……SnS1S2….. Sx-1.
The problem is which number x you choose will get the k-th smallest Rx.
If there are more than one answer,choose the one with the smallest x.
Input
First line of each case contains two numbers n and k.(2 ≤ k≤ n ≤ 1 000 000).
Next line contains a number of length n. Each position corresponds to a number of 1-9.
Output
Output x on a single line for each case.
Sample Input
10 5
6228814462
10 4
9282777691
Sample Output
6
7
Hint
Source
先把串重复一次,求出后缀数组,重复是为了能得到循环串的字典序,然后对于位置在前一半的后缀,可以把循环串看成它的一个前缀,当然字典序完全没影响,然后其实每一个Rx都是去掉这个后缀的第一个字符,所以如果这个后缀的rank是k的话,这个后缀的其中一个前缀就是Rx,那么去掉的那个字符的位置就是sa[k] - 1了,当然是循环串,所以如果k==1的话,去掉的是最后一个字符
/*************************************************************************
> File Name: A.cpp
> Author: ALex
> Mail: [email protected]
> Created Time: 2015年04月19日 星期日 17时07分42秒
************************************************************************/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
const double pi = acos(-1.0);
const int inf = 0x3f3f3f3f;
const double eps = 1e-15;
typedef long long LL;
typedef pair <int, int> PLL;
class SuffixArray
{
public:
static const int N = 2002000;
int init[N];
int X[N];
int Y[N];
int Rank[N];
int sa[N];
int height[N];
int buc[N];
int LOG[N];
int dp[N][20];
int size;
void clear()
{
size = 0;
}
void insert(int n)
{
init[size++] = n;
}
bool cmp(int *r, int a, int b, int l)
{
return (r[a] == r[b] && r[a + l] == r[b + l]);
}
void getsa(int m) //m一般为最大值+1
{
init[size] = 0;
int l, p, *x = X, *y = Y, n = size + 1;
for (int i = 0; i < m; ++i)
{
buc[i] = 0;
}
for (int i = 0; i < n; ++i)
{
++buc[x[i] = init[i]];
}
for (int i = 1; i < m; ++i)
{
buc[i] += buc[i - 1];
}
for (int i = n - 1; i >= 0; --i)
{
sa[--buc[x[i]]] = i;
}
for (l = 1, p = 1; l <= n && p < n; m = p, l *= 2)
{
p = 0;
for (int i = n - l; i < n; ++i)
{
y[p++] = i;
}
for (int i = 0; i < n; ++i)
{
if (sa[i] >= l)
{
y[p++] = sa[i] - l;
}
}
for (int i = 0; i < m; ++i)
{
buc[i] = 0;
}
for (int i = 0; i < n; ++i)
{
++buc[x[y[i]]];
}
for (int i = 1; i < m; ++i)
{
buc[i] += buc[i - 1];
}
for (int i = n - 1; i >= 0; --i)
{
sa[--buc[x[y[i]]]] = y[i];
}
int i;
for (swap(x, y), x[sa[0]] = 0, p = 1, i = 1; i < n; ++i)
{
x[sa[i]] = cmp(y, sa[i - 1], sa[i], l) ? p - 1 : p++;
}
}
}
void getheight()
{
int h = 0, n = size;
for (int i = 0; i <= n; ++i)
{
Rank[sa[i]] = i;
}
height[0] = 0;
for (int i = 0; i < n; ++i)
{
if (h > 0)
{
--h;
}
int j =sa[Rank[i] - 1];
for (; i + h < n && j + h < n && init[i + h] == init[j + h]; ++h);
height[Rank[i] - 1] = h;
}
}
//预处理每一个数字的对数,用于rmq,常数优化
void initLOG()
{
LOG[0] = -1;
for (int i = 1; i < N; ++i)
{
LOG[i] = (i & (i - 1)) ? LOG[i - 1] : LOG[i - 1] + 1;
}
}
void initRMQ()
{
initLOG();
int n = size;
int limit;
for (int i = 0; i < n; ++i)
{
dp[i][0] = height[i];
}
for (int j = 1; j <= LOG[n]; ++j)
{
limit = (n - (1 << j));
for (int i = 0; i <= limit; ++i)
{
dp[i][j] = min(dp[i][j - 1], dp[i + (1 << (j - 1))][j - 1]);
}
}
}
int LCP(int a, int b)
{
int t;
a = Rank[a];
b = Rank[b];
if (a > b)
{
swap(a, b);
}
--b;
t = LOG[b - a + 1];
return min(dp[a][t], dp[b - (1 << t) + 1][t]);
}
void solve(int k)
{
int cnt = 0;
for (int i = 1; i <= size; ++i)
{
if (sa[i] < size / 2)
{
++cnt;
if (cnt == k)
{
if (sa[i] == 0)
{
printf("%d\n", (size >> 1));
}
else
{
printf("%d\n", sa[i]);
}
break;
}
}
}
}
}SA;
char str[1001000];
int main()
{
int n, k;
while (~scanf("%d%d", &n, &k))
{
scanf("%s", str);
SA.clear();
for (int i = 0; i < n; ++i)
{
SA.insert(str[i] - '0');
}
for (int i = 0; i < n; ++i)
{
SA.insert(str[i] - '0');
}
SA.getsa(13);
SA.getheight();
SA.solve(k);
}
return 0;
}