- 最超值的Mac——Mac mini
初心么么哒
你知道最超值的Mac是什么吗?自2005年以来,Macmini一直是Apple台式机产品线中的主要产品。最初推出是为了让对Mac好奇的Mac进入Apple生态系统的一种简单方式,现在新的AppleSiliconMacmini可能是任何寻找新Mac的人的最有吸引力的购买。什么是AppleSiliconMacmini?M1Macmini是Apple最小的台式电脑,同时也是最快的台式电脑之一。最新型号由
- 粉尘识别数据集——工地/矿下粉尘数据识别,数据集已划分,YOLO格式-有权重,相关指数,map相当高
毕设宇航
YOLO机器学习目标跟踪
数据集名称粉尘识别数据集数据集描述这是一个专门针对工地或矿下粉尘识别设计的数据集,包含了大量的高清图像,用于识别施工或采矿环境中产生的粉尘。数据集已经按照标准的数据划分方法分为训练集、验证集和测试集,并且以YOLO格式进行了标注。此外,数据集中还包含了预训练的模型权重和相关性能指标,如mAP(MeanAveragePrecision),表明模型在粉尘识别任务上的表现优异。数据集特点高清图像:所有图
- 暑假训练总结
G_Meteor
不知不觉暑假就要这样结束了,这个假期主要在弄ACM了,但是由于家里原因并没有来学校参加集训,而是在家里跟着学知识点刷题做练习赛。编程作为计算机的基础以及入门知识,其重要性自然不用说,而且大一刚开始就是学算法,当时感觉编程挺感兴趣的,然后参加那个新生编程赛。刚开始接触到ACM也是在这次新生编程比赛上吧,当时听到学长对ACM的介绍后,感觉挺感兴趣的,再加上当时感觉编程也是挺有意思的,然后大一寒假就加入
- 综述论文“A Survey of Zero-Shot Learning: Settings, Methods, and Applications”
硅谷秋水
机器学习机器学习神经网络深度学习
该零样本学习综述,发表于ACMTrans.Intell.Syst.Technol.10,2,Article13(January2019)摘要:大多数机器学习方法着重于对已经在训练中看到其类别的实例进行分类。实际上,许多应用程序需要对实例进行分类,而这些实例的类以前没有见过。零样本学习(Zero-ShotLearning)是一种强大而有前途的学习范例,其中训练实例涵盖的类别与想分类的类别是不相交的。
- 【Hot100】LeetCode—64. 最小路径和
山脚ice
#Hot100leetcode算法
目录1-思路题目识别动规五部曲2-实现⭐64.最小路径和——题解思路3-ACM实现原题链接:64.最小路径和1-思路题目识别识别1:给一个二维数组grid,每次只能向下或者向右移动一步识别2:求移动到右下角的最小路径和动规五部曲求的是路径的和,与不同路径的区别在于是否加上当前grid[i][j]的值2-实现⭐64.最小路径和——题解思路classSolution{publicintminPathS
- 【Hot100】LeetCode—763. 划分字母区间
山脚ice
#Hot100leetcode哈希算法
目录1-思路哈希表+双指针2-实现⭐763.划分字母区间——题解思路3-ACM实现原题链接:763.划分字母区间1-思路哈希表+双指针①找到元素最远的出现位置:哈希表②根据最远出现位置,判断区间的分界线:双指针实现1-定义一个哈希数组,判断最远出现的位置:int[]hash=newint[27]遍历字符串,记录最远出现位置2-分割点利用数组,收集结果intleft=0;intright=0;记录左
- redis cluster之Gossip协议
tracy_668
什么是Gossip协议Gossipprotocol也叫EpidemicProtocol(流行病协议),实际上它还有很多别名,比如:“流言算法”、“疫情传播算法”等。这个协议的作用就像其名字表示的意思一样,非常容易理解,它的方式其实在我们日常生活中也很常见,比如电脑病毒的传播,森林大火,细胞扩散等等。Gossipprotocol最早是在1987年发表在ACM上的论文《EpidemicAlgorith
- 卡码网C++基础课 | 1. A+B问题I
TimeManager1
c++开发语言
之前一直有在学习c++,陆陆续续也跟着代码随想录刷了一些力扣,但是总感觉在自己的基本功不够扎实,尤其是在遇见ACM输入输出模式的时候,所以就想着跟着卡尔的基础课教程系统性地学习一遍,就在这里记录一下自己的小心得吧,也算是一种小小的打卡,希望自己能够坚持下去!加油!1.在该问题中,输入输出是靠内置库iostream实现的,里面有两个基础类型:istream和ostream,也就是输入输出流,在声明了
- 【笔试题汇总】华为春招笔试题题解 2024-3-20
PXM的算法星球
大厂面试题华为面试数据结构算法
这里是paoxiaomo,一个现役ACMer,之后将会持续更新算法笔记系列以及笔试题题解系列本文章面向想打ICPC/蓝桥杯/天梯赛等程序设计竞赛,以及各个大厂笔试的选手感谢大家的订阅➕和喜欢有什么想看的算法专题可以私信博主(本文题面由清隆学长收集)01.K小姐的魔法药水问题描述K小姐是一位魔法师,她最近在研究一种神奇的魔法药水。这种药水由一系列魔法材料制成,每种材料都有一个正整数的魔法值。K小姐按
- 【华为笔试题汇总】2024-05-22-华为春招笔试题-三语言题解(Python/Java/Cpp)
春秋招笔试突围
华为春秋招笔试题汇总最新互联网春秋招试题合集华为pythonjava算法
大家好这里是清隆学长,一枚热爱算法的程序员✨本系列打算持续跟新小米近期的春秋招笔试题汇总~ACM银牌|多次AK大厂笔试|编程一对一辅导感谢大家的订阅➕和喜欢清隆这边最近正在收集近一年互联网各厂的笔试题汇总,如果有需要的小伙伴可以关注后私信一下清隆领取,会在飞书进行同步的跟新。文章目录01.获取公共链表片段问题描述输入格式输出格式样例输入样例输出数据范围题解参考代码02.矿车运输成本问题描述输入格式
- 四、使用MoveGroup C++接口——运动学(二)
阿白机器人
MoveIt2机器人运动规划c++
目录前言1.运动学插件(KinematicsPlugin)2.碰撞检测(CollisionChecking)3.碰撞对象(CollisionObjects)4.允许碰撞矩阵(AllowedCollisionMatrix,ACM)前言运动学是研究物体运动的几何属性而不涉及力或质量的科学。在机器人学中,运动学涉及到机器人的机械臂和关节如何运动。1.运动学插件(KinematicsPlugin)Move
- java mp3转m4a_轻松在你的Android App中转换音频文件,支持格式:WAV, AAC, MP3, M4A, WMA 和FLAC....
Kada Liao
javamp3转m4a
AndroidAudioConverterConvertaudiofilesinsideyourAndroidappeasily.ThisisawrapperofFFmpeg-Android-Javalib.Supportedformats:AACMP3M4AWMAWAVFLACLibsize:~9mbHowToUse1-AddthispermissionintoyourAndroidManife
- 【Hot100】LeetCode—118. 杨辉三角
山脚ice
#Hot100leetcode算法
目录1-思路模拟2-实现⭐118.杨辉三角——题解思路3-ACM实现原题链接:118.杨辉三角1-思路模拟1-定义grid2-实现递推公式3-初始化4-遍历递推收集结果2-实现⭐118.杨辉三角——题解思路classSolution{publicList>generate(intnumRows){int[][]grid=newint[numRows][numRows];//初始化for(inti=
- Tensorflow中Keras搭建神经网络六步法及参数详解 -- Tensorflow自学笔记12
青瓷看世界
tensorflow笔记人工智能深度学习神经网络
一.tf.keras搭建神经网络六步法1.import相关模块如importtensorflowastf。2.指定输入网络的训练集和测试集如指定训练集的输入x_train和标签y_train,测试集的输入x_test和标签y_test。3.逐层搭建网络结构model=tf.keras.models.Sequential()。4.在model.compile()中配置训练方法选择训练时使用的优化器、
- 【Hot100】LeetCode—215. 数组中的第K个最大元素
山脚ice
#Hot100leetcode算法
目录1-思路快速选择2-实现⭐215.数组中的第K个最大元素——题解思路3-ACM实现原题连接:215.数组中的第K个最大元素1-思路快速选择第k大的元素的数组下标:inttarget=nums.length-k1-根据partition分割的区间来判断当前处理方式如果返回的int等于target说明找到了,直接返回如果返回的int小于target说明要在当前区间的右侧寻找,也就是[pivotIn
- 图像去噪技术:自适应均值滤波器(ACmF)
潦草通信狗
均值算法算法人工智能图像处理信息与通信matlab
在图像处理领域,噪声是影响图像质量和视觉感知的主要因素之一。椒盐噪声是一种常见的噪声类型,它随机地将像素值改变为最小值或最大值,严重影响图像的视觉效果。为了解决这一问题,我们开发了一种自适应均值滤波器(ACmF),它能够有效地去除椒盐噪声,同时保留图像的重要细节。一、ACmF算法简介ACmF算法是一种基于局部像素值的自适应去噪方法。它通过分析图像的局部区域,对噪声像素进行智能处理,以恢复图像的原始
- 代码随想录+力扣刷题记录+华为机考准备记录
梁慢慢慢慢
leetcode算法数据结构
为了准备华为机考的刷题记录,已压线过背景:数据结构与算法零基础,此前没有刷过题,会Python。学习路线按照代码随想录的顺序刷题,刷题平台:力扣以上大致过了一遍后开始刷华为机考真题(cdsn上购买的真题,刷题平台是购买的真题中的OJ平台,也是ACM模式)总共用时1个月。完成情况:力扣80个题+华为2024年机考真题。大部分题目都只做过1次,掌握得很不牢固,机考的时候也是压线过。时间比较紧急,做到后
- fastText 情感分类
dreampai
情感分类任务就是看一段文本,然后分辨这个人是否喜欢他们在讨论的这个东西。情感分类一个最大的挑战就是可能标记的训练集没有那么多,但是有了词嵌入,即使只有中等大小的标记的训练集,你也能构建一个不错的情感分类器image.pngimage.png假设有一个句子:“这个衣服质量不错”通过分词、去除停用词等预处理操作,得到“衣服/质量/不错”获取“衣服”、“质量”、“不错”的对应词向量(可以通过TF-IDF
- 释放oracle undo表空间,undo表空间释放
IBEANI
释放oracleundo表空间
一.概述:使用IMPDP工具导入大表(166G)数据时,报undo表空间不能扩展,导入工作失败.手工停止了impdp后,undo表空间存在无法自动释放的故障.本文主要描述如何通过重建undo表空间来手工释放undo表空间.数据库环境的描述:OS:AIX6.1+HACMP5.3DB:ORACLE10.2.0.5RAC二.问题的描述impdp导入数据时,报ora-30036错误$impdpuser/p
- 【机器学习】K近邻
可口的冰可乐
机器学习机器学习人工智能
2.K近邻K近邻算法(KNN)的基本思想是通过计算待分类样本与训练集中所有样本之间的距离,选取距离最近的K个样本,根据这些样本的标签进行分类或回归。KNN属于非参数学习算法,因为它不假设数据的分布形式,主要依赖距离度量来进行决策。优点简单易懂:KNN算法非常直观,容易理解和实现。无假设:KNN算法对数据没有假设,适用于复杂分布的数据集。适用于多类分类问题:KNN能够处理多类分类问题,只需在投票过程
- Spark入门:KMeans聚类算法
17111_Chaochao1984a
算法sparkkmeans
聚类(Clustering)是机器学习中一类重要的方法。其主要思想使用样本的不同特征属性,根据某一给定的相似度度量方式(如欧式距离)找到相似的样本,并根据距离将样本划分成不同的组。聚类属于典型的无监督学习(UnsupervisedLearning)方法。与监督学习(如分类器)相比1,无监督学习的训练集没有人为标注的结果。在非监督式学习中,数据并不被特别标识,学习模型是为了推断出数据的一些内在结构。
- YOLOv8模型参数详解
AdaCoding
YOLOv8改进系列YOLO目标检测
YOLOv8模型参数详解task:任务类型,通常为detect(检测)。mode:模式,train表示训练模式。model:模型配置文件的路径,指定了YOLOv8模型的结构。data:数据集配置文件的路径,包含了训练集和验证集的信息。epochs:训练的轮数。patience:早期停止的耐心值,表示在没有进一步改进后多少轮后停止训练。batch:批处理大小,即每次前向和后向传播使用的样本数。img
- 【最新华为OD机试E卷】日志采集系统(100分)多语言题解-(Python/C/JavaScript/Java/Cpp)
春秋招笔试突围
华为odpythonc语言
大家好这里是春秋招笔试突围,一枚热爱算法的程序员✨本系列打算持续跟新华为OD-E/D卷的三语言AC题解ACM金牌️团队|多次AK大厂笔试|编程一对一辅导感谢大家的订阅➕和喜欢最新华为OD机试D卷目录,全、新、准,题目覆盖率达95%以上,支持题目在线评测,专栏文章质量平均94分最新华为OD机试目录:https://blog.csdn.net/Qmtdearu/article/details/1393
- 【机器学习】任务二:波士顿房价的数据与鸢尾花数据分析及可视化
FHYAAAX
机器学习机器学习数据分析人工智能
目录1.实验知识准备1.1NumPy1.2Matplotlib库1.3scikit-learn库:1.4TensorFlow1.5Keras2.波士顿房价的数据分析及可视化2.1波士顿房价的数据分析2.1.1步骤一:导入所需的模块和包2.1.2步骤二:从Keras库中加载波士顿房价数据集2.1.3步骤三:加载本地CSV数据集2.1.4步骤四:划分特征和目标变量2.1.5步骤五:划分训练集和测试集2
- mac版QQ聊天信息备份与导出方法
iHTCboy
前言最近,我司终于更换新电脑的计划落实啦!!!Macmini3.0GHz双核IntelCorei7处理器(TurboBoost高达3.5GHz)16GB1600MHzLPDDR3SDRAM1TB融合硬盘IntelIrisGraphics图形处理器非常值的可贺!然而,就是新电脑,一切都是新!一切都是白!!非常多工具的数据需要迁移,开发环境需要配置,最近也打算总结一下新电脑配置方面的文章,作为自己备份
- Zero-Shot Image Classification总结
夏日小光
1任务说明现有的benchmark通过ImageNet-1k上预训练的Res101从已知类的训练集提取feature或者featuremap,然后对每一个类引入一个语义标签,可能是属性标签(attributelabel)、或者描述标签(sentenceembedding)等。对于某个类的属性标签(向量形式),每个维度表示一种属性,该维度下的取值表示这个属性在该类别中存在的可能性,值得注意的是ben
- 训练过程训练集的准确率都低于验证集和测试集的准确率可能的原因
Wils0nEdwards
python人工智能深度学习
每一个epoch训练集的准确率都低于验证集和测试集的准确率,这种现象不太常见,可能有以下几个原因:1.数据增强过强如果你在训练集上使用了较强的数据增强(如随机翻转、ColorJitter等),而验证集和测试集仅进行了基础的预处理。这会导致训练集的样本更具挑战性,模型在训练集上的表现不如在验证集和测试集上的表现。2.训练和验证集分布差异训练集、验证集和测试集的分布可能存在差异。如果训练集包含更多的噪
- 识别实验笔记和经验总结
Wils0nEdwards
笔记
1.跑对比实验之前,首先保证对比的公平性和可靠性!在进行图像分类模型对比实验时,为了确保对比的公平性和可靠性,以下几个因素需要重点考虑:数据集的一致性:数据集分割:确保训练集、验证集和测试集的划分是一致的。各模型使用相同的训练数据和测试数据。数据集大小:确保数据集的样本数量充足且具有代表性,避免数据集过小导致结果不具备普遍性。数据预处理:图像预处理方法:所有模型使用相同的预处理方法(如归一化、裁剪
- 数据结构之查找
点一下我的id
http://www.bjfuacm.com/problem/287/#includeusingnamespacestd;#defineOK1#defineMAXSIZE10000typedefintStatus;typedefintElementType;typedefintKeyType;typedefstruct{ElementType*data;intlength;}SqList;Stat
- 【Hot100】LeetCode—153. 寻找旋转排序数组中的最小值
山脚ice
#Hot100leetcodejava算法
目录1-思路二分2-实现⭐33.搜索旋转排序数组——题解思路3-ACM实现原题链接:153.寻找旋转排序数组中的最小值1-思路二分左区间二分找分界点,二分找到旋转后的分界点即可以nums[mid]为基准,对比nums[0]即可找到区间分界点2-实现⭐33.搜索旋转排序数组——题解思路classSolution{publicintfindMin(int[]nums){intleft=0;intrig
- HQL之投影查询
归来朝歌
HQLHibernate查询语句投影查询
在HQL查询中,常常面临这样一个场景,对于多表查询,是要将一个表的对象查出来还是要只需要每个表中的几个字段,最后放在一起显示?
针对上面的场景,如果需要将一个对象查出来:
HQL语句写“from 对象”即可
Session session = HibernateUtil.openSession();
- Spring整合redis
bylijinnan
redis
pom.xml
<dependencies>
<!-- Spring Data - Redis Library -->
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-redi
- org.hibernate.NonUniqueResultException: query did not return a unique result: 2
0624chenhong
Hibernate
参考:http://blog.csdn.net/qingfeilee/article/details/7052736
org.hibernate.NonUniqueResultException: query did not return a unique result: 2
在项目中出现了org.hiber
- android动画效果
不懂事的小屁孩
android动画
前几天弄alertdialog和popupwindow的时候,用到了android的动画效果,今天专门研究了一下关于android的动画效果,列出来,方便以后使用。
Android 平台提供了两类动画。 一类是Tween动画,就是对场景里的对象不断的进行图像变化来产生动画效果(旋转、平移、放缩和渐变)。
第二类就是 Frame动画,即顺序的播放事先做好的图像,与gif图片原理类似。
- js delete 删除机理以及它的内存泄露问题的解决方案
换个号韩国红果果
JavaScript
delete删除属性时只是解除了属性与对象的绑定,故当属性值为一个对象时,删除时会造成内存泄露 (其实还未删除)
举例:
var person={name:{firstname:'bob'}}
var p=person.name
delete person.name
p.firstname -->'bob'
// 依然可以访问p.firstname,存在内存泄露
- Oracle将零干预分析加入网络即服务计划
蓝儿唯美
oracle
由Oracle通信技术部门主导的演示项目并没有在本月较早前法国南斯举行的行业集团TM论坛大会中获得嘉奖。但是,Oracle通信官员解雇致力于打造一个支持零干预分配和编制功能的网络即服务(NaaS)平台,帮助企业以更灵活和更适合云的方式实现通信服务提供商(CSP)的连接产品。这个Oracle主导的项目属于TM Forum Live!活动上展示的Catalyst计划的19个项目之一。Catalyst计
- spring学习——springmvc(二)
a-john
springMVC
Spring MVC提供了非常方便的文件上传功能。
1,配置Spring支持文件上传:
DispatcherServlet本身并不知道如何处理multipart的表单数据,需要一个multipart解析器把POST请求的multipart数据中抽取出来,这样DispatcherServlet就能将其传递给我们的控制器了。为了在Spring中注册multipart解析器,需要声明一个实现了Mul
- POJ-2828-Buy Tickets
aijuans
ACM_POJ
POJ-2828-Buy Tickets
http://poj.org/problem?id=2828
线段树,逆序插入
#include<iostream>#include<cstdio>#include<cstring>#include<cstdlib>using namespace std;#define N 200010struct
- Java Ant build.xml详解
asia007
build.xml
1,什么是antant是构建工具2,什么是构建概念到处可查到,形象来说,你要把代码从某个地方拿来,编译,再拷贝到某个地方去等等操作,当然不仅与此,但是主要用来干这个3,ant的好处跨平台 --因为ant是使用java实现的,所以它跨平台使用简单--与ant的兄弟make比起来语法清晰--同样是和make相比功能强大--ant能做的事情很多,可能你用了很久,你仍然不知道它能有
- android按钮监听器的四种技术
百合不是茶
androidxml配置监听器实现接口
android开发中经常会用到各种各样的监听器,android监听器的写法与java又有不同的地方;
1,activity中使用内部类实现接口 ,创建内部类实例 使用add方法 与java类似
创建监听器的实例
myLis lis = new myLis();
使用add方法给按钮添加监听器
- 软件架构师不等同于资深程序员
bijian1013
程序员架构师架构设计
本文的作者Armel Nene是ETAPIX Global公司的首席架构师,他居住在伦敦,他参与过的开源项目包括 Apache Lucene,,Apache Nutch, Liferay 和 Pentaho等。
如今很多的公司
- TeamForge Wiki Syntax & CollabNet User Information Center
sunjing
TeamForgeHow doAttachementAnchorWiki Syntax
the CollabNet user information center http://help.collab.net/
How do I create a new Wiki page?
A CollabNet TeamForge project can have any number of Wiki pages. All Wiki pages are linked, and
- 【Redis四】Redis数据类型
bit1129
redis
概述
Redis是一个高性能的数据结构服务器,称之为数据结构服务器的原因是,它提供了丰富的数据类型以满足不同的应用场景,本文对Redis的数据类型以及对这些类型可能的操作进行总结。
Redis常用的数据类型包括string、set、list、hash以及sorted set.Redis本身是K/V系统,这里的数据类型指的是value的类型,而不是key的类型,key的类型只有一种即string
- SSH2整合-附源码
白糖_
eclipsespringtomcatHibernateGoogle
今天用eclipse终于整合出了struts2+hibernate+spring框架。
我创建的是tomcat项目,需要有tomcat插件。导入项目以后,鼠标右键选择属性,然后再找到“tomcat”项,勾选一下“Is a tomcat project”即可。具体方法见源码里的jsp图片,sql也在源码里。
补充1:项目中部分jar包不是最新版的,可能导
- [转]开源项目代码的学习方法
braveCS
学习方法
转自:
http://blog.sina.com.cn/s/blog_693458530100lk5m.html
http://www.cnblogs.com/west-link/archive/2011/06/07/2074466.html
1)阅读features。以此来搞清楚该项目有哪些特性2)思考。想想如果自己来做有这些features的项目该如何构架3)下载并安装d
- 编程之美-子数组的最大和(二维)
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
import java.util.Random;
public class MaxSubArraySum2 {
/**
* 编程之美 子数组之和的最大值(二维)
*/
private static final int ROW = 5;
private stat
- 读书笔记-3
chengxuyuancsdn
jquery笔记resultMap配置ibatis一对多配置
1、resultMap配置
2、ibatis一对多配置
3、jquery笔记
1、resultMap配置
当<select resultMap="topic_data">
<resultMap id="topic_data">必须一一对应。
(1)<resultMap class="tblTopic&q
- [物理与天文]物理学新进展
comsci
如果我们必须获得某种地球上没有的矿石,才能够进行某些能量输出装置的设计和建造,而要获得这种矿石,又必须首先进行深空探测,而要进行深空探测,又必须获得这种能量输出装置,这个矛盾的循环,会导致地球联盟在与宇宙文明建立关系的时候,陷入困境
怎么办呢?
 
- Oracle 11g新特性:Automatic Diagnostic Repository
daizj
oracleADR
Oracle Database 11g的FDI(Fault Diagnosability Infrastructure)是自动化诊断方面的又一增强。
FDI的一个关键组件是自动诊断库(Automatic Diagnostic Repository-ADR)。
在oracle 11g中,alert文件的信息是以xml的文件格式存在的,另外提供了普通文本格式的alert文件。
这两份log文
- 简单排序:选择排序
dieslrae
选择排序
public void selectSort(int[] array){
int select;
for(int i=0;i<array.length;i++){
select = i;
for(int k=i+1;k<array.leng
- C语言学习六指针的经典程序,互换两个数字
dcj3sjt126com
c
示例程序,swap_1和swap_2都是错误的,推理从1开始推到2,2没完成,推到3就完成了
# include <stdio.h>
void swap_1(int, int);
void swap_2(int *, int *);
void swap_3(int *, int *);
int main(void)
{
int a = 3;
int b =
- php 5.4中php-fpm 的重启、终止操作命令
dcj3sjt126com
PHP
php 5.4中php-fpm 的重启、终止操作命令:
查看php运行目录命令:which php/usr/bin/php
查看php-fpm进程数:ps aux | grep -c php-fpm
查看运行内存/usr/bin/php -i|grep mem
重启php-fpm/etc/init.d/php-fpm restart
在phpinfo()输出内容可以看到php
- 线程同步工具类
shuizhaosi888
同步工具类
同步工具类包括信号量(Semaphore)、栅栏(barrier)、闭锁(CountDownLatch)
闭锁(CountDownLatch)
public class RunMain {
public long timeTasks(int nThreads, final Runnable task) throws InterruptedException {
fin
- bleeding edge是什么意思
haojinghua
DI
不止一次,看到很多讲技术的文章里面出现过这个词语。今天终于弄懂了——通过朋友给的浏览软件,上了wiki。
我再一次感到,没有辞典能像WiKi一样,给出这样体贴人心、一清二楚的解释了。为了表达我对WiKi的喜爱,只好在此一一中英对照,给大家上次课。
In computer science, bleeding edge is a term that
- c中实现utf8和gbk的互转
jimmee
ciconvutf8&gbk编码
#include <iconv.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include <sys/stat.h>
int code_c
- 大型分布式网站架构设计与实践
lilin530
应用服务器搜索引擎
1.大型网站软件系统的特点?
a.高并发,大流量。
b.高可用。
c.海量数据。
d.用户分布广泛,网络情况复杂。
e.安全环境恶劣。
f.需求快速变更,发布频繁。
g.渐进式发展。
2.大型网站架构演化发展历程?
a.初始阶段的网站架构。
应用程序,数据库,文件等所有的资源都在一台服务器上。
b.应用服务器和数据服务器分离。
c.使用缓存改善网站性能。
d.使用应用
- 在代码中获取Android theme中的attr属性值
OliveExcel
androidtheme
Android的Theme是由各种attr组合而成, 每个attr对应了这个属性的一个引用, 这个引用又可以是各种东西.
在某些情况下, 我们需要获取非自定义的主题下某个属性的内容 (比如拿到系统默认的配色colorAccent), 操作方式举例一则:
int defaultColor = 0xFF000000;
int[] attrsArray = { andorid.r.
- 基于Zookeeper的分布式共享锁
roadrunners
zookeeper分布式共享锁
首先,说说我们的场景,订单服务是做成集群的,当两个以上结点同时收到一个相同订单的创建指令,这时并发就产生了,系统就会重复创建订单。等等......场景。这时,分布式共享锁就闪亮登场了。
共享锁在同一个进程中是很容易实现的,但在跨进程或者在不同Server之间就不好实现了。Zookeeper就很容易实现。具体的实现原理官网和其它网站也有翻译,这里就不在赘述了。
官
- 两个容易被忽略的MySQL知识
tomcat_oracle
mysql
1、varchar(5)可以存储多少个汉字,多少个字母数字? 相信有好多人应该跟我一样,对这个已经很熟悉了,根据经验我们能很快的做出决定,比如说用varchar(200)去存储url等等,但是,即使你用了很多次也很熟悉了,也有可能对上面的问题做出错误的回答。 这个问题我查了好多资料,有的人说是可以存储5个字符,2.5个汉字(每个汉字占用两个字节的话),有的人说这个要区分版本,5.0
- zoj 3827 Information Entropy(水题)
阿尔萨斯
format
题目链接:zoj 3827 Information Entropy
题目大意:三种底,计算和。
解题思路:调用库函数就可以直接算了,不过要注意Pi = 0的时候,不过它题目里居然也讲了。。。limp→0+plogb(p)=0,因为p是logp的高阶。
#include <cstdio>
#include <cstring>
#include <cmath&