C++贪心算法之均分纸牌

均分纸牌

题目描述

有 N 堆纸牌,编号分别为 1,2,…, N。每堆上有若干张,但纸牌总数必为 N 的倍数。可以在任一堆上取若于张纸牌,然后移动。移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 的堆上;在编号为 N 的堆上取的纸牌,只能移到编号为 N-1 的堆上;其他堆上取的纸牌,可以移到相邻左边或右边的堆上。现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多。例如 N=4,4 堆纸牌数分别为:(1)9 (2)8 (3)17 (4)6移动3次可达到目的:从(3)取4张牌放到(4)(9 8 13 10) -> 从 (3) 取 3 张牌放到 (2)(9 11 10 10)-> 从 (2) 取 1 张牌放到(1)(10 10 10 10)。

输入

N(N 堆纸牌,1 <= N <= 100)A1 A2 … An (N 堆纸牌,每堆纸牌初始数,l<= Ai <=10000)

输出

所有堆均达到相等时的最少移动次数。

样例输入

4
9 8 17 6

样例输出

3

来源

NOIP2002

实现代码

#include
main()
{
	int n,a[1000],s=0,t=0;
	scanf("%d",&n);
	for(int i=1;i<=n;i++)
	{
		scanf("%d",&a[i]);
		s+=a[i];
	}
	s/=n;
	for(int i=1;i


你可能感兴趣的:(贪心算法,错题大总结,C++学习日志,贪心算法刷题集锦)