E. Cyclic Components(并查集?)

E. Cyclic Components
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

You are given an undirected graph consisting of nn vertices and mm edges. Your task is to find the number of connected components which are cycles.

Here are some definitions of graph theory.

An undirected graph consists of two sets: set of nodes (called vertices) and set of edges. Each edge connects a pair of vertices. All edges are bidirectional (i.e. if a vertex aa is connected with a vertex bb, a vertex bb is also connected with a vertex aa). An edge can't connect vertex with itself, there is at most one edge between a pair of vertices.

Two vertices uu and vv belong to the same connected component if and only if there is at least one path along edges connecting uu and vv.

A connected component is a cycle if and only if its vertices can be reordered in such a way that:

  • the first vertex is connected with the second vertex by an edge,
  • the second vertex is connected with the third vertex by an edge,
  • ...
  • the last vertex is connected with the first vertex by an edge,
  • all the described edges of a cycle are distinct.

A cycle doesn't contain any other edges except described above. By definition any cycle contains three or more vertices.

There are 66 connected components, 22 of them are cycles: [7,10,16][7,10,16] and [5,11,9,15][5,11,9,15].
Input

The first line contains two integer numbers nn and mm (1n21051≤n≤2⋅1050m21050≤m≤2⋅105) — number of vertices and edges.

The following mm lines contains edges: edge ii is given as a pair of vertices viviuiui (1vi,uin1≤vi,ui≤nuiviui≠vi). There is no multiple edges in the given graph, i.e. for each pair (vi,uivi,ui) there no other pairs (vi,uivi,ui) and (ui,viui,vi) in the list of edges.

Output

Print one integer — the number of connected components which are also cycles.

Examples
input
Copy
5 4
1 2
3 4
5 4
3 5
output
Copy
1
input
Copy
17 15
1 8
1 12
5 11
11 9
9 15
15 5
4 13
3 13
4 3
10 16
7 10
16 7
14 3
14 4
17 6
output
Copy
2
Note

In the first example only component [3,4,5][3,4,5] is also a cycle.

The illustration above corresponds to the second example.

题意:给你n个顶点,m条边,求单圈环的个数。(只有一个圈的环)

题解:通过观察发现单圈环里的顶点的度都为2,所以并查集找连通图,map存顶点度数,遍历查找单圈环。

#include  
#include  
#include  
#include  
#include  
#include  
#include  
#include  
#include
#include
using namespace std;
#define INIT ios::sync_with_stdio(false)
#define LL long long int

struct node {
	int id;
	int count;
};
int dp[2 * 100005];
vectormm[200005];
void init() {
	for (int i = 0;i < 2 * 100005;i++) {
		dp[i] = i;
	}
}

int _find(int x) {
	if (dp[x] != x) {
		return dp[x] = _find(dp[x]);
	}
	return dp[x];
}

void _union(int  x, int y) {
	int xx = _find(x);
	int yy = _find(y);
	if (xx < yy) {
		dp[xx]= yy;
	}
	else {
		dp[yy] = xx;
	}
}

int main() {
	int n, m;
	mapmp;//存每个节点的度
	while (cin >> n >> m)
	{
		mp.clear();
		init();
		int a, b;
		int ans = 0;
		for (int i = 0;i < m;i++) {
			cin >> a >> b;
			mp[a]++;
			mp[b]++;
			if (_find(a) != _find(b)) {
				_union(a, b);
			}
		}
		//通过父节点把连通图存进一个vector数组
		for (int i = 1;i <= n;i++) {
			mm[_find(i)].push_back(i);
		}
		for (int i = 1;i <= n;i++) {
			//连通图至少要有3个点
			if (mm[i].size() > 2) {
				int flag = 1;
				for (int j = 0;j < mm[i].size()&&flag;j++) {
					//只要有一个度不为2就跳出
					if (mp[mm[i][j]] != 2) {
						flag = 0;
					}
				}
				if (flag)ans++;
			}
		}
		cout << ans << endl;
	}
	return 0;
}




你可能感兴趣的:(并查集,codeforces)