OJ-HDU A1 = ?

                                     A1 = ?

Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 10248    Accepted Submission(s): 6197

Problem Description

有如下方程:Ai = (Ai-1 + Ai+1)/2 - Ci (i = 1, 2, 3, .... n).
若给出A0, An+1, 和 C1, C2, .....Cn.
请编程计算A1 = ?

Input

输入包括多个测试实例。
对于每个实例,首先是一个正整数n,(n <= 3000); 然后是2个数a0, an+1.接下来的n行每行有一个数ci(i = 1, ....n);输入以文件结束符结束。

Output

对于每个测试实例,用一行输出所求得的a1(保留2位小数).

Sample Input

1

50.00

25.00

10.00

2

50.00

25.00

10.00

20.00

Sample Output

27.50

15.00

思路:

1.找规律

n=1    2A1=A0+A2-2C1

n=2    3A1=2A0+A3-4C1-2C2

n=3    4A1=3A0+A4-6C1-4C2-2C3

n=4    5A1=4A0+A5-8C1-6C2-4C3-2C4

(ps:纯数学,个人A不动,百度了一下,找了一下规律QAQ)

AcCode:

import java.text.DecimalFormat;
import java.util.List;
import java.util.Scanner;

public class Main{
	public static void main(String[] args) {
		Scanner in = new Scanner(System.in);
		DecimalFormat format = new DecimalFormat("0.00");
		while(in.hasNext()) {
			int n = in.nextInt();
			double a0 = in.nextDouble();
			double anAdd1 = in.nextDouble();
			double[] nums = new double[n];
			for (int i = 0; i < nums.length; i++) {
				nums[i] = in.nextDouble();
			}
			double result = n*a0+anAdd1;
			int j = 2*n;
			for (int i = 0; i < nums.length; i++) {
				result = result - j*nums[i];
				j=j-2;
			}
			System.out.println(format.format(result/(n+1)));
		}
	}
}

 

你可能感兴趣的:(HDU)