【论文笔记】CVPR2020 Rethinking Computer-aided Tuberculosis Diagnosis

在cvpr上少见的使用medical data的paper
【论文笔记】CVPR2020 Rethinking Computer-aided Tuberculosis Diagnosis_第1张图片

Contributions

  • 收集了新的很大的TB dataset:Tuberculosis X-ray (TBX11K) dataset,包括:
    11200 X-ray Images
    Image-level annotation + TB area annotation using bounding boxes
    Image-level annotations include 4 classes: healthy, active TB, latent TB, & unhealthy but non-TB

  • Reform existing object detectors to perform simultaneous image classification and TB area detection (SSD, RetinaNet, Faster-RCNN, FCOS),并定义了classification 和 detection 的 metrics。 作为dataset的baselines

Methods

  • the classification branch learns to classify X-rays into 3 classes: healthy, sick but non-TB, and TB
    evaluation metrics: accuracy, auc, sensitivity…

  • the detection branch learns to detect TBs with 3 classes: active TB, latent TB
    evaluation metrics: average precision of bounding box

Results

  • 和其他datasets的对比,比其他大很多
    【论文笔记】CVPR2020 Rethinking Computer-aided Tuberculosis Diagnosis_第2张图片
  • 作者对于每个baseline model都做了实验。从结果上看,Faster-RCNN 和 SSD 的表现比较突出。
    【论文笔记】CVPR2020 Rethinking Computer-aided Tuberculosis Diagnosis_第3张图片

你可能感兴趣的:(论文笔记,机器学习,计算机视觉)