- 多目标跟踪
行走的小部落
目标跟踪人工智能计算机视觉
侦探联盟:多目标跟踪大作战适合对象:高中生关键点:多目标跟踪、传统方法、深度学习、卡尔曼滤波、匈牙利算法、CNN、Re-ID序章:神秘的闹市阴影夜晚的星城,一场盛大的街头音乐节即将开幕。灯光下,形形色色的人在广场上游走。人声、音乐声交织成宏大的交响。突然,警局接到一封匿名信:有人要在音乐节上搞破坏,还不止一个人。“多目标追踪联盟”火速集结:他们擅长在人群中盯梢,每一个侦探都有独特的本领。今天,他们
- 【图像处理入门】10. 计算机视觉基础:从人脸识别到文档矫正
小米玄戒Andrew
图像处理:从入门到专家图像处理计算机视觉人工智能CV算法opencvpython
摘要本文聚焦计算机视觉经典应用场景,带你实现人脸识别、文档扫描矫正和目标跟踪三大项目。通过Haar级联分类器、透视变换、CamShift算法等技术,结合OpenCV实战代码,掌握从特征检测到图像几何变换的完整流程,将图像处理知识升级为计算机视觉工程能力。一、项目1:基于Haar级联的人脸识别系统1.技术原理Haar级联分类器通过级联多个简单的Haar特征强分类器,快速检测图像中的目标(如人脸)。核
- 基于YOLOv8的人脸识别与跟踪系统设计与实现
YOLO实战营
YOLOui目标检测目标跟踪深度学习
1.项目背景与意义随着智能安防、智能监控、人机交互等领域的快速发展,人脸识别与跟踪技术受到了广泛关注。它不仅在安防监控系统中用于身份认证与异常检测,也在智能门禁、自动考勤和营销系统中发挥重要作用。传统的人脸检测多依赖Haar级联或基于特征的检测方法,准确率和鲁棒性有限。深度学习方法,尤其是YOLOv8等先进目标检测框架,实现了实时且高准确度的人脸检测。同时,结合人脸识别(身份验证)和多目标跟踪,可
- OpenCV Video 模块使用指南(Python 版)
ice_junjun
OpenCVopencvpython人工智能
一、模块概述video模块是OpenCV的视频分析核心,提供以下核心功能:背景建模:运动检测(MOG2/KNN背景减除)光流法:物体运动估计(LK金字塔光流)目标跟踪:单目标/多目标跟踪(KCF、MOSSE等算法)视频分析:运动轨迹提取、异常行为检测二、核心功能详解与实战1.背景减除(运动检测)1.1算法对比算法名称特点适用场景核心参数示例代码MOG2混合高斯模型,自适应学习率室内外场景(如监控视
- 多假设跟踪关联目标进行数据匹配
ytttr873
算法
多假设跟踪(MultipleHypothesisTracking,MHT)是一种强大的数据关联方法,广泛应用于目标跟踪、数据匹配等领域。它通过同时考虑多个假设来解决目标关联问题,能够有效处理目标数量变化、目标交叉、遮挡以及噪声干扰等情况。1.多假设跟踪(MHT)的基本原理1.1数据关联问题在目标跟踪和数据匹配中,数据关联是一个核心问题。简单来说,我们需要将传感器观测到的数据(如雷达回波、摄像头图像
- 深度学习篇---OC-SORT实际应用效果
Ronin-Lotus
深度学习篇上位机知识篇深度学习pythonOC-SROT
OC-SORT算法在实际应用中的效果可从准确性、鲁棒性、效率三个核心维度评估,其表现与传统多目标跟踪算法(如SORT、DeepSORT)相比有显著提升,尤其在复杂场景中优势突出。以下是具体分析:一、准确性:目标关联更可靠1.遮挡场景下的ID保持能力优势表现:传统算法(如SORT)依赖卡尔曼滤波预测目标位置,当目标长时间遮挡时,预测误差会累积导致轨迹丢失或ID切换。OC-SORT通过以观测为中心的恢
- 多目标跟踪笔记2023
AI算法网奇
数据结构与算法目标跟踪笔记人工智能
目录cvpr2023多目标跟踪算法汇总:MixFormerV2ovtrack模型284MMotionTrackFocusOnDetails:OnlineMulti-objectTrackingwithDiverseFine-grainedRepresentation1、摘要2、方法Observation-CentricSORT:RethinkingSORTforRobustMulti-Object
- 毕设--基于Flask的智能个人财务管理系统
做科研的狗
flaskpython后端毕设毕业设计scikit-learn
本文旨在探讨基于Flask框架的智能个人财务管理系统的设计与实现,该系统旨在帮助用户更好地管理个人财务,提供一系列便捷且实用的功能。系统的主要功能包括用户注册与登录、收支管理、预算制定与管理、财务分析与报告、资产管理、财务目标跟踪、数据导入与导出、以及管理员管理功能等。从技术层面来看,前端将采用Vue框架以提升用户界面的交互体验,后端则选用Python语言结合Flask框架进行开发,数据库方面计划
- 基于中心点预测的视觉评估与可视化流程
视觉AI
目标检测+轨迹预测目标跟踪算法人工智能计算机视觉数据结构算法
基于中心点预测的视觉评估与可视化流程基于中心点预测的视觉评估与可视化流程一、脚本功能概览二、可视化与评分机制详解1.真实框解析2.调用模型处理帧3.预测中心点与真实值的对比4.打分策略5.图像可视化三、目录结构要求四、运行方式五、应用场景与拓展思路六、总结七,完整代码基于中心点预测的视觉评估与可视化流程在图像或视频目标跟踪任务中,我们经常需要评估预测中心点与真实中心点之间的差异,以衡量模型的精度和
- 基于BoxMOT的目标检测与跟踪全流程详解
Hi20240217
学习环境搭建目标检测人工智能计算机视觉
基于BoxMOT的目标检测与跟踪全流程详解一、技术背景与应用场景二、环境搭建2.1Docker容器配置2.2目录结构规划三、关键资源准备3.1数据集选择3.2模型选择3.3视频素材准备四、核心组件安装4.1基础组件安装4.2OpenCV定制编译4.3下载BoxMOT框架,配置环境变量五、目标跟踪实战演示六、性能评估七、参考链接一、技术背景与应用场景目标检测与跟踪是计算机视觉领域的核心技术,广泛应用
- KMeans, KNN, Meanshift
机器灵
基础算法理论KMeansKNNMeanshift
这三个玩意,因为要么带K,要么带Mean,所以吗,放在一起介绍一下:Meanshift因为我本身是图像处理出身,最早接触的是Meanshift,其经常用于图像分割,目标跟踪等方面,下面首先说一下Meanshift:算法步骤:在未被标记的数据点中随机选择一个点作为起始中心点center;找出以center为中心半径为radius的区域中出现的所有数据点,认为这些点同属于一个聚类C。同时在该聚类中记录
- 基于OpenCV的物体跟踪:CSRT算法
知舟不叙
opencv算法人工智能物体跟踪
文章目录引言一、系统概述二、CSRT算法简介三、核心代码解析1.初始化跟踪器和摄像头2.主循环结构3.目标选择与跟踪初始化4.目标跟踪与结果显示5.资源释放四、系统使用说明五、完整代码六、总结引言目标跟踪是计算机视觉领域的重要应用之一,广泛应用于视频监控、人机交互、增强现实等领域。本文将介绍如何使用OpenCV中的CSRT跟踪器实现一个简单的实时目标跟踪系统,通过摄像头捕获视频流并对用户选定的目标
- 粒子滤波器解读
DuHz
人工智能神经网络深度学习机器学习信号处理信息与通信
粒子滤波器解读引言粒子滤波器是一种强大的非线性滤波技术,用于估计动态系统的状态。与卡尔曼滤波器不同,粒子滤波器可以处理任意的非线性性和非高斯性,这使其在机器人定位、目标跟踪、计算机视觉等领域得到广泛应用。基本概念粒子滤波器的核心思想是使用一组加权样本(称为"粒子")来近似目标状态的后验概率分布。每个粒子代表状态空间中的一个可能状态,而其权重则表示该状态的可能性或概率。想象在一个迷雾中的森林里寻找宝
- opencv学习:光流估计及完整代码实现
夜清寒风
学习计算机视觉opencv人工智能
光流估计是什么?是空间运动物体在观测成像平面上的像素运动的“瞬时速度”,根据各个像素点的速度矢量特征,可以对图像进行动态分析,例如目标跟踪。基本原理(1)亮度恒定:同一点随着时间的变化,其亮度不会发生改变。(2)小运动:随着时间的变化不会引起位置的剧烈变化,只有小运动情况下才能用前后帧之间单位位置变化引起的灰度变化去近似灰度对位置的偏导数。(3)空间一致:一个场景上邻近的点投影到图像上也是邻近点,
- 无人机视觉:连接像素与现实世界 —— 像素与GPS坐标双向转换指南
Lunar*
算法与优化无人机
在无人机航拍应用中,一个核心的需求是将图像上的某个点与现实世界中的地理位置精确对应起来。无论是目标跟踪、地图测绘还是农情监测,理解图像像素与其对应的经纬度(GPS坐标)之间的关系至关重要。本文将详细介绍如何实现单个像素坐标到GPS坐标的双向转换,并提供基于Python的实现思路。核心问题像素坐标->GPS坐标:已知图像上一个点的像素坐标(u,v),以及拍摄时无人机的状态(位置、姿态、相机参数),如
- 深入理解与实现GM-PHD滤波算法:C++应用指南
快撑死的鱼
算法杂谈C++(C语言)算法大揭秘算法c++开发语言
前言多目标跟踪(Multi-TargetTracking,MTT)是自动驾驶、雷达系统、机器人视觉等领域中的重要技术。高斯混合概率假设密度(GaussianMixtureProbabilityHypothesisDensity,GM-PHD)滤波器作为一种有效的多目标跟踪算法,因其能够在处理杂波和新生目标时表现出色而广受关注。本文将详细介绍GM-PHD滤波算法,并通过C++代码示例展示其实现。希望
- 计算机视觉笔记 第三章:目标检测
唐风绸繆
计算机视觉人工智能计算机视觉目标检测视觉检测
计算机视觉笔记:第一章图像分类-CSDN博客计算机视觉笔记第二章图像语义分割-CSDN博客计算机视觉笔记第三章:目标检测-CSDN博客计算机视觉第四章:图像识别、目标跟踪-CSDN博客计算机视觉第五章多目视觉(立体视觉)-CSDN博客标定图像中目标的位置,并给出目标的类别目标检测和语义分割的区别:语义分割:包含低层的像素级别的处理方法,也包含高层的语义级别的处理方法目标检测:基本都是高层的语义级别
- YOLO学习笔记 | YOLOv8与卡尔曼滤波实现目标跟踪与预测(附代码)
单北斗SLAMer
YOLO学习从零到1目标检测目标跟踪YOLOpython
YOLOv8与卡尔曼滤波实现目标跟踪与预测一、原理与公式二、分模块代码实现1.**卡尔曼滤波模块**2.**目标检测模块(YOLOv8)**3.**跟踪器模块(SORT算法)**4.**主程序流程**三、关键优化点四、匈牙利算法原理与公式五、Python代码实现1.**基础版匈牙利算法(手动实现)**2.**优化版(基于`scipy`库)**六、在目标跟踪中的应用示例1.**代价矩阵计算(IOU)
- 目标检测YOLO实战应用案例100讲- 无人机平台下露天目标检测与计数
林聪木
目标检测YOLO无人机
目录知识储备基于YOLOv8改进的无人机露天目标检测与计数一、环境配置与依赖安装二、核心代码实现(带详细注释)1.改进YOLOv8模型定义(添加注意力机制)2.无人机视角数据增强(drone_augment.py)3.多目标跟踪与计数(tracking_counter.py)4.完整推理流程(main.py)三、关键技术优化点四、数据集配置示例前言目标检测算法研究现状分析基于检测方法的目标计数研究
- BoxMOT:Yolov8+多目标跟踪方案_笔记1
山山而川_R
视觉大模型_1YOLO
代码地址:boxmot一、安装环境1、condacreate-ntrackpython==3.10-ycondaactivatetrack二、boxmot安装安装以linux系统为例,假定该系统已经安装有python>=3.8,且建立好虚拟环境。将boxmot安装到yolo_tracking目录:gitclonehttps://github.com/mikel-brostrom/yolo_trac
- Windows下创建MOT15数据集的符号链接显示“设备不支持符号链接。”的问题
编程绿豆侠
windows深度学习目标跟踪
写在前面最近在做目标跟踪的项目,然后我想从最基本的SORT算法开始做起,在下载完项目代码,准备看看视频的跟踪效果时,发现需要下载MOT15数据集,按照官方的说明,需要在下载并解压MOT15数据集后创建一个符号链接,如下所示。上面这个是linux环境下的命令,我参考了这篇博文,尝试在Windows环境下创建符号链接,然后出现如下报错:原因我在上网查询资料的时候发现SORT算法的github中有人提出
- 【计算机视觉】CV项目实战- Florence-SAM 多模态视觉目标检测+图像分割
白熊188
计算机视觉计算机视觉目标检测人工智能
Florence-SAM多模态视觉分析系统:技术解析与实战指南一、项目架构与技术解析1.1核心模型架构1.2支持的任务模式二、环境配置与部署实战2.1本地部署指南2.2运行演示系统三、核心功能实战解析3.1图像开放词汇检测3.2视频目标跟踪四、高级应用与二次开发4.1自定义模型集成4.2生产环境部署优化五、典型问题深度解决方案5.1显存不足问题5.2视频处理中断六、项目演进方向6.1技术扩展路线6
- YOLOv5-DeepSort 项目使用教程
怀创宪
YOLOv5-DeepSort项目使用教程项目地址:https://gitcode.com/gh_mirrors/yo/Yolov5-deepsort-inference1.项目介绍1.1项目概述YOLOv5-DeepSort是一个结合了YOLOv5目标检测算法和DeepSort目标跟踪算法的开源项目。该项目旨在通过YOLOv5进行目标检测,并使用DeepSort进行目标跟踪和计数。代码封装成一个
- SiamMask原理详解:从SiamFC到SiamRPN++,再到多任务分支设计
视觉AI
Siam系列网络深度解析人工智能计算机视觉目标检测目标分割
SiamMask原理详解:从SiamFC到SiamRPN++,再到多任务分支设计一、引言二、SiamFC:目标跟踪的奠基者1.SiamFC的结构2.SiamFC的局限性三、SiamRPN++:引入Anchor机制的改进1.SiamRPN的创新2.SiamRPN++的进一步优化四、SiamMask:目标跟踪与分割的完美结合1.SiamMask的多任务设计2.Mask分支的作用五、总结与展望参考文献系
- 基于Python和PyTorch的实现示例,结合YOLOv8进行人体检测、HRNet进行姿态估计,以及LSTM进行时间序列分析。
人工智能专属驿站
计算机视觉
视频输入:从摄像头或视频文件中读取视频流。人体检测与跟踪:使用目标检测模型(如YOLOv8、EfficientDet)检测视频帧中的人体。使用目标跟踪算法(如DeepSORT)跟踪人体,确保连续帧中的人体ID一致。姿态估计:使用姿态估计模型(如HRNet、OpenPose)提取人体的关键点(如头、肩、肘、膝、踝等)。关键点信息用于分析人体的姿态和运动。时间序列分析:使用时间序列模型(如LSTM、G
- 【光流(Optical Flow)估计】
XTX_AI
神经网络与深度学习计算机视觉人工智能
光流(OpticalFlow)光流(OpticalFlow)是计算机视觉中的一种技术,用于估计图像中每个像素点在连续帧之间的运动情况。光流算法的目标是找到在两个相邻帧之间从一个位置移动到另一个位置的图像中的每个像素的位移向量。光流通常用于运动估计、目标跟踪和视频压缩等领域。原理:光流算法基于一个假设:相邻帧中的相同物体在图像中的运动应该是连续的。光流算法根据这一假设,在图像中搜索每个像素的运动向量
- 模型预测控制(MPC):原理、应用与实践
爱科技Ai
工具人工智能
1.引言在工业控制领域,**模型预测控制(MPC)**是一种先进的控制策略,因其在多变量和复杂系统中的卓越表现而备受关注。相比传统的控制方法,MPC通过预测未来系统行为并优化控制输入,能够实现目标跟踪、约束满足和性能最优。本文将深入探讨MPC的原理、实战应用及其缺点,并以一个详细示例阐释其控制循环,最后简要对比MPC与PID的差异。2.MPC的核心概念MPC是一种基于数学模型的优化控制方法,其核心
- 【课题推荐】多速率自适应卡尔曼滤波(MRAKF)用于目标跟踪
MATLAB卡尔曼
免费的小例程课题推荐与讲解目标跟踪人工智能计算机视觉
多速率自适应卡尔曼滤波(Multi-RateAdaptiveKalmanFilter,MRAKF)是一种针对多传感器异步数据融合的滤波算法,适用于传感器采样率不同、噪声特性时变的目标跟踪场景。本文给出一个多速率自适应卡尔曼滤波框架,以无人机跟踪场景为例,融合IMU和GPS数据文章目录背景多速率自适应卡尔曼滤波(MRAKF)简介应用背景代码样例代码运行结果代码介绍关键特性总结背景多速率自适应卡尔曼滤
- 目标跟踪中的 CV、CA、CT 模型:运动建模核心理论解析
温文尔雅透你娘
目标跟踪与自动驾驶目标跟踪人工智能计算机视觉自动驾驶机器学习
一、运动模型:目标跟踪的“动力学引擎”在目标跟踪领域,准确描述目标运动规律是实现精准跟踪的前提。CV(匀速)、CA(匀加速)、CT(协调转弯)模型作为最基础的运动模型,通过对目标加速度、角速度等动力学特性的假设,构建了状态空间的数学表达,是卡尔曼滤波、粒子滤波等算法的核心输入。其核心价值在于:适配不同运动场景:从直线匀速到复杂机动的全覆盖降低状态空间维度:通过先验假设简化动力学方程支撑最优估计:为
- Deepsort目标跟踪代码
小阿技术
目标跟踪人工智能计算机视觉
importargparseimportosimportplatformimportshutilimporttimefrompathlibimportPathimportcv2importnumpyasnpimporttorchimporttorch.backends.cudnnascudnnfromultralytics.utils.downloadsimportattempt_download
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不