- MATLAB环境下一种音频降噪优化方法—基于时频正则化重叠群收缩
哥廷根数学学派
信号处理小波分析图像处理语音识别人工智能
语音增强是语音信号处理领域中的一个重大分支,这一分支已经得到国内外学者的广泛研究。当今时代,随着近六十年来的不断发展,己经产生了许多有效的语音增强算法。根据语音增强过程中是否利用语音和噪声的先验信息,语音增强算法一般被归类为两类,一类是无先验信息的语音增强算法,另外一类则是具有先验信息的语音增强算法。在第一类无先验信息语音增强算法中,比较常用的语音增强算法有谱减算法、基于统计模型的算法、基于信号子
- Ambiq推出语音增强人工智能以消除物联网应用中的噪声
希尔贝壳AISHELL
智能语音人工智能物联网
超低功耗半导体解决方案供应商Ambiq®推出了其最新产品——神经网络语音增强器(NNSE),并已将该方案加入到neuralSPOT的(开源模型)ModelZoo中。这一高度优化过的AI模型可以高效实时地将背景噪声从设备对话中去除,从而在嘈杂的环境中实现清晰的语音捕获。与所有AmbiqModelZoo组件一样,NNSE包含脚本和工具,可帮助开发人员向其应用程序添加语音去噪功能。它还包含一个简单的图形
- 低信噪比环境下的语音端点检测
jUicE_g2R
经验模态分解EMD语音识别语言信号处理低信噪比matlab
端点检测技术是语音信号处理的关键技术之一为提高低信噪比环境下端点检测的准确率和稳健性,提出了一种非平稳噪声抑制和调制域谱减结合功率归一化倒谱距离的端点检测算法1端点检测1-1定义定义:在存在背景噪声的情况下检测出语音的起始点和结束点(这里的重点是噪声环境下语音信号的处理)1-2应用需求应用于语音信号处理:语音增强、语音识别、编码和传输需求是:人们希望在远场或者嘈杂的环境中也能用语音控制智能设备,因
- 语音技术的未来:识别更精准、应用更丰富!
virtaitech
人工智能gpu算力语音识别
引言随着科技的飞速发展,语音技术正迅猛进步,为我们的生活带来了全新的体验。ICASPP国际会议作为语音领域的重要盛会,汇聚了众多专家学者,展示了语音处理与识别技术的最新进展。本文将结合近年ICASPP上的最新进展和各大知名语音技术公司产品探讨这些技术点,从语音识别、语音增强、语音风格迁移到语音情感识别等多个方向,展望语音技术的未来,并深入探讨GPU算力在这一领域的重要作用。1.语音识别的进步ICA
- 转载_关于AEC算法的几点思考
williamwanglei
音频
一年前我剖析过开源的AEC算法,文章链接是语音增强和语音识别;时隔这么长时间,再过来看这个算法,略有体会,以下有几点个人思考:AEC算法的主要目的是自身音源消除,对于手机或者pc这类的通话场景,这类场景和音响场景稍有差异,两者遇到的主要问题会有些差异;对于视频通话这类场景,两个通信终端的时钟偏斜和漂移是不定的,而音箱场景这个是可以在硬件上加以解决的,但是音箱场景的非线性失真却比通信场景严重的,功率
- 麦克风阵列入门
孤芳剑影
信号与系统算法
文章引注:http://t.csdnimg.cn/QP7uC一、麦克风阵列的定义所谓麦克风阵列其实就是一个声音采集的系统,该系统使用多个麦克风采集来自于不同空间方向的声音。麦克风按照指定要求排列后,加上相应的算法(排列+算法)就可以解决很多房间声学问题,比如声源定位、去混响、语音增强、盲源分离等。二、麦克风指向性麦克风的方向性是指麦克风可以接收到语音的方向。声音可以从不同的方向传达到麦克风,麦克风
- 麦克风阵列技术 三 ( 声源定位 波束形成 去混响 麦克风阵列结构设计 声学结构确认流程)
sxau_zhangtao
人机语音交互人工智能声学结构确认流程声源定位波束形成去混响麦克风阵列结构设计
麦克风阵列技术麦克风阵列技术详解声源定位延时估计角度计算波束形成波束形成模型波束形成基本理论去混响麦克风阵列结构设计声学结构确认流程紧接上一个博客文章,此为第三部分。上一部分见:麦克风阵列技术二(自动增益控制自动噪声抑制回声消除语音活动检测)麦克风阵列技术详解声源定位麦克风阵列可以自动检测声源位置,跟踪说话人,声源定位信息既可以用于智能交互,也可以用于后续的空域滤波,对目标方向进行语音增强。利用麦
- AliOS Things 声源定位应用演示
xstardust
开发框架与中间件算法函数
摘要:1.概述利用麦克风阵列进行声源定位在智能降噪、语音增强、语音识别等领域有广泛应用和研究前景。本文介绍基于AliOSThings+STM32F413HDiscovery开发板实现声源定位算法集成和功能演示。1.概述利用麦克风阵列进行声源定位在智能降噪、语音增强、语音识别等领域有广泛应用和研究前景。本文介绍基于AliOSThings+STM32F413HDiscovery开发板实现声源定位算法集
- AliOS Things声源定位应用演示
阿里云云栖号
云栖社区算法开发框架与中间件
1.概述利用麦克风阵列进行声源定位在智能降噪、语音增强、语音识别等领域有广泛应用和研究前景。本文介绍基于AliOSThings+STM32F413HDiscovery开发板实现声源定位算法集成和功能演示。声源定位算法本案例集成了STMicroelectronics的Acoustic_SL声源定位算法。Acoustic_SL是STMicroelectronics开发的声源定位算法,支持XCORR、G
- 深度学习音频降噪
mingqian_chu
#音频部分深度学习音视频人工智能
原文出自语音算法组添加链接描述这是AI降噪的第二期,上一期我们介绍了AI降噪的N种数据扩增方法,这一期我们介绍下AI降噪的一些损失函数。降噪,或者语音增强,经过近50年的研究发展,涌现出了很多优秀的降噪算法,从最简单的谱减法,到维纳滤波,再到子空间的方法以及基于统计模型的MMSE估计器,然而传统信号处理的降噪算法在imcra-omlsa出现之后发就展趋于平缓。在2014年中科大的徐博士用DNN直接
- PotPlayer降噪处理和人声增强
CJCChester
音视频
很多本地录屏视频,比如老师网课的录屏,会把电脑自己的声音也录下来,听着很烦躁,下面是我自己用potplayer播放视频时的一些处理。F5打开配置→声音→关闭规格化、晶化→关闭混响,打开降噪,门限自选→语言/同步/其他打开语音增强→均衡器→选择极端降噪(但是声音会变小很多)或者超高音,并打开superEQ均衡2022.12.11补充对极端降噪后,声音变小,有三种处理方式:PotPlayer设置里调节
- 语音增强的算法及应用
渣渣威的仿真秀
算法
语音增强的目的是从带噪语音中提取尽可能纯净的原始语音,主要目标是提高语音质量和可懂度。这一领域的发展历程相当丰富,多年来,学者们一直在努力寻求各种优良的语音增强算法。在近年的研究中,各种语音增强方法不断被提出,如基于小波变换的方法,基于人耳掩蔽效应的方法,基于听觉屏蔽的语音增强算法,基于最小均方误差MMSE-LSA语音增强算法,谱减法等,这些方法奠定了语音增强理论的基础并使之逐渐走向成熟。一、主要
- 深度学习之轻量级神经网络在TWS蓝牙音频处理器上的部署
周南音频科技教育学院(AI湖湘学派)
音频信号处理神经网络算法
加我微信hezkz17进数字音频系统研究开发交流答疑群(课题组)深度学习之轻量级神经网络在TWS蓝牙音频处理器上的部署深度学习之轻量级神经网络在TWS蓝牙音频处理器上的部署深度学习之轻量级神经网络在TWS蓝牙音频处理器上的部署项目一科大讯飞经验在Matlab平台上实现广义旁瓣消除器(GSC),最小方差无失真响应(MVDR)等波束形成算法,同时分析它们的效果在Liu**台上跑通语音增强试试处理框架R
- 【AI视野·今日Sound 声学论文速览 第二十六期】Mon, 16 Oct 2023
hitrjj
SoundaudioPapers人工智能智能声学计算机声学声音生成声音异常检测语言增强
AI视野·今日CS.Sound声学论文速览Mon,16Oct2023Totally7papers上期速览✈更多精彩请移步主页DailySoundPapersLow-latencySpeechEnhancementviaSpeechTokenGenerationAuthorsHuayingXue,XiulianPeng,YanLu现有的基于深度学习的语音增强主要采用数据驱动的方法,利用大量具有各种噪
- 深入剖析iLBC 解码器原理
Audio_Wang
iLBC/iSACSpeechSignalProcessingcodec
继续学习iLBCCodec...一、iLBC解码器的流程如图1是没有丢帧情况下的iLBC解码流程,当解码端收到Payload时,首先从bitstream里面解析出解码所需要的参数。这里的解码参数从LPC开始,然后是重建起始状态,接下来的subframe重建与编码时的顺序一致,通过解码三级形状/增益矢量并且相乘再叠加在一起就得到了重建的残差信号。然后进入语音增强模块,提高语音信号的周期性,最后再经过
- 本周 AI 新闻报道:多个大厂发布了重大更新
天地会珠海分舵
人工智能chatgptOpenAiAdobeFireflyGoogle
AdobeMax大会上,Adobe发布了多项使用AI的新功能。其中最重要的是全新的FireflyImage2图像生成模型,可以生成逼真的人像;Illustrator中的文本到向量图功能,允许通过文字提示生成可编辑的矢量图形;Premiere中推出一键去除填充词的语音增强等功能,这些新功能极大地提升了用户的内容创作效率。Google宣布在搜索结果中推出直接生成图像的功能,用户只需在搜索框中输入文字提
- 基于PSD-ML算法的语音增强算法matlab仿真
简简单单做算法
MATLAB算法开发#视频语音算法matlabPSD-ML语音增强
目录1.算法运行效果图预览2.算法运行软件版本3.部分核心程序4.算法理论概述1.加窗处理:2.分帧处理:3.功率谱密度估计:4.滤波处理:5.逆变换处理:6.合并处理:5.算法完整程序工程1.算法运行效果图预览2.算法运行软件版本matlab2022A3.部分核心程序.................................................................
- Interspeech 2023 | 火山引擎流媒体音频技术之语音增强和AI音频编码
字节跳动技术团队
火山引擎音视频人工智能
背景介绍为了应对处理各类复杂音视频通信场景,如多设备、多人、多噪音场景,流媒体通信技术渐渐成为人们生活中不可或缺的技术。为达到更好的主观体验,使用户听得清、听得真,流媒体音频技术方案融合了传统机器学习和基于AI的语音增强方案,利用深度神经网络技术方案,在语音降噪、回声消除、干扰人声消除和音频编解码等方向,为实时通信中的音频质量保驾护航。作为语音信号处理研究领域的旗舰国际会议,Interspeech
- ICASSP 2023 | 解密实时通话中基于 AI 的一些语音增强技术
字节跳动技术团队
人工智能语音识别计算机视觉深度学习
动手点关注干货不迷路背景介绍实时音视频通信RTC在成为人们生活和工作中不可或缺的基础设施后,其中所涉及的各类技术也在不断演进以应对处理复杂多场景问题,比如音频场景中,如何在多设备、多人、多噪音场景下,为用户提供听得清、听得真的体验。作为RTC方案中不可或缺的技术,语音增强技术正从传统的基于统计学习的方案向基于深度学习的方案融合演进,利用AI技术,可以在语音降噪、回声消除、干扰人声消除等方面实现更
- THUHCSI人机语音交互实验室9篇论文被语音旗舰国际会议INTERSPEECH录用
语音之家
智能语音交互
2023年ISCA国际语音通讯学会年会(2023AnnualConferenceoftheInternationalSpeechCommunicationAssociation,INTERSPEECH2023)将于2023年8月20日-24日在爱尔兰都柏林召开,清华大学人机语音交互实验室(THUHCSI)将在本次会议上发表9篇论文。这些论文涉及语音合成、语音识别、语音增强、语音分离、视频配音等多个
- AliCloudDenoise 语音增强算法,助力实时会议系统进入超清音质时代
简介:近些年,随着实时通信技术的发展,在线会议逐渐成为人们工作中不可或缺的重要办公工具,据不完全统计,线上会议中约有75%为纯语音会议,即无需开启摄像头和屏幕共享功能,此时会议中的语音质量和清晰度对线上会议的体验便至关重要。作者|七琦审校|泰一前言在现实生活中,会议所处的环境是极具多样性的,包括开阔的嘈杂环境、瞬时非平稳的键盘敲击声音等,这些对传统的基于信号处理的语音前端增强算法提出了很大的挑战。
- 我去,这是什么黑科技!用信号处理方法抑制瞬态噪声
语音之家
智能语音科技信号处理
对于语音增强来说,噪声一般可以分为稳态噪声(如白噪声)和瞬态噪声(有的地方也叫非稳态噪声,如键盘声)。如果对语音降噪有一定了解的读者会知道,一般的信号处理方法对稳态噪声比较有效,可以参考WebRTCANR流程解析,然而对于瞬态噪声,由于噪声变换较快,噪声估计算法没办法准确跟踪到噪声的变化,因此一般采用基于深度学习的方法对瞬态噪声进行抑制,可以参考DNN单通道语音增强。但是,有没有可能使用信号处理来
- K210开发实例-I2S播放音频
视觉&物联智能
物联网全栈开发实战单片机嵌入式硬件物联网K210边缘计算
I2S播放音频I2S播放音频1、I2S介绍2、I2S驱动API介绍3、I2S播放PCM数据3.1直接播放生成的Sine波形数据3.2使用DMA传输音频数据1、I2S介绍K210内置音频总线共有3个(I²S0、I²S1、I²S2),都是MASTER模式。其中I²S0支持可配置连接语音处理模块,实现语音增强和声源定向的功能。下面是一些共有的特性:总线宽度可配置为8,16,和32位每个接口最多支持4个立
- 《SEGAN: Speech Enhancement Generative Adversarial Network》论文阅读
qq_46079584
音视频其他
本文的作者是SantiagoPascual,AntonioBonafonte,JoanSerra。研究动机目前语音增强的技术都是用在频谱域上或者高维特征上,这样的话,大多数的音频处理会受到噪声环境数量的限制并且依赖一阶统计特征。为了解决这些问题,深度网络是可以从大型的数据集上学习到复杂的映射。本论文中,提出了增强GAN网络,名叫SEGAN,它是直接用时域的波形当作输入送入到网络当中去的,在看不见的
- 设计一款数字助听器可能需要用到以下音频算法
周龙(AI湖湘学派)
音视频
设计一款助听器可能需要用到以下音频算法:1响度补偿算法:助听器可能需要根据用户的听力损失情况调整不同频率范围内的增益,以提供个性化的听力补偿。这可以通过基于用户配置或自适应算法的频率响应调整来实现。2噪声抑制:用于减少环境中的噪声干扰,使用户能够更清晰地听到所需的声音。3压缩扩展:使用动态范围压缩和扩展技术,使较弱的声音更易于听到,同时限制过高音量的出现。4麦克风阵列方向性处理:语音增强算法,利用
- 【强烈推荐】 十多款2023年必备国内外王炸级AI工具 (免费 精品 好用) 让你秒变神一样的装逼佬感受10倍生产力 (2) AI修音
极客小俊
AI人工智能人工智能AI修音算法工具推荐声音处理
个人主页极客小俊✍作者简介:web开发者、设计师、技术分享博主希望大家多多支持一下,我们一起进步!如果文章对你有帮助的话,欢迎评论点赞收藏加关注AI声音处理(修音)⭐AI人工智能不仅可以处理图片,声音都可以处理,真的是太强了!随着人工智能技术的不断发展,声音处理已经成为了AI领域的一个重要应用之一!那么接下来这里就推荐我经常使用的AI在线免费修音工具吧!AdobeAI语音增强(音频降噪在线处理工具
- Python语音增强
YEGE学AI算法
语音处理python开发语言
简介音频时域波形具有以下特征:音调,响度,质量。我们在进行数据增强时,最好只做一些小改动,使得增强数据和源数据存在较小差异即可,切记不能改变原有数据的结构,不然将产生“脏数据”,通过对音频数据进行数据增强,能有助于我们的模型避免过度拟合并变得更加通用。经过实验发现对声波的以下改变是有用的:Noiseaddition(增加噪音)、Addreverb(增加混响)、Timeshifting(时移)、Pi
- 智能语音信息处理团队18篇论文被语音技术顶会ICASSP 2023接收
语音之家
智能语音人工智能深度学习语音识别
近日,ICASSP2023会议发出了审稿结果通知,语音及语言信息处理国家工程研究中心智能语音信息处理团队共18篇论文被会议接收,论文方向涵盖语音识别、语音合成、话者识别、语音增强、情感识别、声音事件检测等,各接收论文简介见后文。来源丨语音及语言国家工程研究中心语音及语言信息处理国家工程实验室于2011年由国家发改委正式批准成立,由中国科学技术大学和科大讯飞股份有限公司联合共建,是我国语音产业界唯一
- WebRTC音频系统 之audio技术栈简介-1
shichaog
webrtc导读webrtc
文章目录第一章WebRTC技术栈简介1.1视频会议中常见的服务端架构1.2WebRTC网络协议栈1.3WebRTC源码目录结构1.4client侧技术栈1.5WebRTCnative编译以及debug1.6APM模块1.7ADM模块WebRTC是Google开源的Web实时音视频通信框架,其提供P2P的音频、视频和一般数据传输协议栈的支持,其音频主要包括:采集播放、众多音频编解码器、语音增强、回声
- 语音识别框架之ESPnet
语音不识别
语音识别语音识别人工智能linux
ESPnet是一个端到端的语音处理工具包,涵盖了端到端的语音识别、文本到语音、语音翻译、语音增强、说话者分类、口语理解等。ESPnet使用pytorch作为深度学习引擎,还遵循Kaldi风格的数据处理、特征提取/格式和配方,为各种语音处理实验提供完整的设置。github直通车克隆gitclonehttps://github.com/espnet/espnet官网文档安装ESPnet使用官网安装的过
- Java常用排序算法/程序员必须掌握的8大排序算法
cugfy
java
分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
先来看看8种排序之间的关系:
1.直接插入排序
(1
- 【Spark102】Spark存储模块BlockManager剖析
bit1129
manager
Spark围绕着BlockManager构建了存储模块,包括RDD,Shuffle,Broadcast的存储都使用了BlockManager。而BlockManager在实现上是一个针对每个应用的Master/Executor结构,即Driver上BlockManager充当了Master角色,而各个Slave上(具体到应用范围,就是Executor)的BlockManager充当了Slave角色
- linux 查看端口被占用情况详解
daizj
linux端口占用netstatlsof
经常在启动一个程序会碰到端口被占用,这里讲一下怎么查看端口是否被占用,及哪个程序占用,怎么Kill掉已占用端口的程序
1、lsof -i:port
port为端口号
[root@slave /data/spark-1.4.0-bin-cdh4]# lsof -i:8080
COMMAND PID USER FD TY
- Hosts文件使用
周凡杨
hostslocahost
一切都要从localhost说起,经常在tomcat容器起动后,访问页面时输入http://localhost:8088/index.jsp,大家都知道localhost代表本机地址,如果本机IP是10.10.134.21,那就相当于http://10.10.134.21:8088/index.jsp,有时候也会看到http: 127.0.0.1:
- java excel工具
g21121
Java excel
直接上代码,一看就懂,利用的是jxl:
import java.io.File;
import java.io.IOException;
import jxl.Cell;
import jxl.Sheet;
import jxl.Workbook;
import jxl.read.biff.BiffException;
import jxl.write.Label;
import
- web报表工具finereport常用函数的用法总结(数组函数)
老A不折腾
finereportweb报表函数总结
ADD2ARRAY
ADDARRAY(array,insertArray, start):在数组第start个位置插入insertArray中的所有元素,再返回该数组。
示例:
ADDARRAY([3,4, 1, 5, 7], [23, 43, 22], 3)返回[3, 4, 23, 43, 22, 1, 5, 7].
ADDARRAY([3,4, 1, 5, 7], "测试&q
- 游戏服务器网络带宽负载计算
墙头上一根草
服务器
家庭所安装的4M,8M宽带。其中M是指,Mbits/S
其中要提前说明的是:
8bits = 1Byte
即8位等于1字节。我们硬盘大小50G。意思是50*1024M字节,约为 50000多字节。但是网宽是以“位”为单位的,所以,8Mbits就是1M字节。是容积体积的单位。
8Mbits/s后面的S是秒。8Mbits/s意思是 每秒8M位,即每秒1M字节。
我是在计算我们网络流量时想到的
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
Spring 3 系列
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- 高性能mysql 之 选择存储引擎(一)
annan211
mysqlInnoDBMySQL引擎存储引擎
1 没有特殊情况,应尽可能使用InnoDB存储引擎。 原因:InnoDB 和 MYIsAM 是mysql 最常用、使用最普遍的存储引擎。其中InnoDB是最重要、最广泛的存储引擎。她 被设计用来处理大量的短期事务。短期事务大部分情况下是正常提交的,很少有回滚的情况。InnoDB的性能和自动崩溃 恢复特性使得她在非事务型存储的需求中也非常流行,除非有非常
- UDP网络编程
百合不是茶
UDP编程局域网组播
UDP是基于无连接的,不可靠的传输 与TCP/IP相反
UDP实现私聊,发送方式客户端,接受方式服务器
package netUDP_sc;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.Ine
- JQuery对象的val()方法执行结果分析
bijian1013
JavaScriptjsjquery
JavaScript中,如果id对应的标签不存在(同理JAVA中,如果对象不存在),则调用它的方法会报错或抛异常。在实际开发中,发现JQuery在id对应的标签不存在时,调其val()方法不会报错,结果是undefined。
- http请求测试实例(采用json-lib解析)
bijian1013
jsonhttp
由于fastjson只支持JDK1.5版本,因些对于JDK1.4的项目,可以采用json-lib来解析JSON数据。如下是http请求的另外一种写法,仅供参考。
package com;
import java.util.HashMap;
import java.util.Map;
import
- 【RPC框架Hessian四】Hessian与Spring集成
bit1129
hessian
在【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中介绍了基于Hessian的RPC服务的实现步骤,在那里使用Hessian提供的API完成基于Hessian的RPC服务开发和客户端调用,本文使用Spring对Hessian的集成来实现Hessian的RPC调用。
定义模型、接口和服务器端代码
|---Model
&nb
- 【Mahout三】基于Mahout CBayes算法的20newsgroup流程分析
bit1129
Mahout
1.Mahout环境搭建
1.下载Mahout
http://mirror.bit.edu.cn/apache/mahout/0.10.0/mahout-distribution-0.10.0.tar.gz
2.解压Mahout
3. 配置环境变量
vim /etc/profile
export HADOOP_HOME=/home
- nginx负载tomcat遇非80时的转发问题
ronin47
nginx负载后端容器是tomcat(其它容器如WAS,JBOSS暂没发现这个问题)非80端口,遇到跳转异常问题。解决的思路是:$host:port
详细如下:
该问题是最先发现的,由于之前对nginx不是特别的熟悉所以该问题是个入门级别的:
? 1 2 3 4 5
- java-17-在一个字符串中找到第一个只出现一次的字符
bylijinnan
java
public class FirstShowOnlyOnceElement {
/**Q17.在一个字符串中找到第一个只出现一次的字符。如输入abaccdeff,则输出b
* 1.int[] count:count[i]表示i对应字符出现的次数
* 2.将26个英文字母映射:a-z <--> 0-25
* 3.假设全部字母都是小写
*/
pu
- mongoDB 复制集
开窍的石头
mongodb
mongo的复制集就像mysql的主从数据库,当你往其中的主复制集(primary)写数据的时候,副复制集(secondary)会自动同步主复制集(Primary)的数据,当主复制集挂掉以后其中的一个副复制集会自动成为主复制集。提供服务器的可用性。和防止当机问题
mo
- [宇宙与天文]宇宙时代的经济学
comsci
经济
宇宙尺度的交通工具一般都体型巨大,造价高昂。。。。。
在宇宙中进行航行,近程采用反作用力类型的发动机,需要消耗少量矿石燃料,中远程航行要采用量子或者聚变反应堆发动机,进行超空间跳跃,要消耗大量高纯度水晶体能源
以目前地球上国家的经济发展水平来讲,
- Git忽略文件
Cwind
git
有很多文件不必使用git管理。例如Eclipse或其他IDE生成的项目文件,编译生成的各种目标或临时文件等。使用git status时,会在Untracked files里面看到这些文件列表,在一次需要添加的文件比较多时(使用git add . / git add -u),会把这些所有的未跟踪文件添加进索引。
==== ==== ==== 一些牢骚
- MySQL连接数据库的必须配置
dashuaifu
mysql连接数据库配置
MySQL连接数据库的必须配置
1.driverClass:com.mysql.jdbc.Driver
2.jdbcUrl:jdbc:mysql://localhost:3306/dbname
3.user:username
4.password:password
其中1是驱动名;2是url,这里的‘dbna
- 一生要养成的60个习惯
dcj3sjt126com
习惯
一生要养成的60个习惯
第1篇 让你更受大家欢迎的习惯
1 守时,不准时赴约,让别人等,会失去很多机会。
如何做到:
①该起床时就起床,
②养成任何事情都提前15分钟的习惯。
③带本可以随时阅读的书,如果早了就拿出来读读。
④有条理,生活没条理最容易耽误时间。
⑤提前计划:将重要和不重要的事情岔开。
⑥今天就准备好明天要穿的衣服。
⑦按时睡觉,这会让按时起床更容易。
2 注重
- [介绍]Yii 是什么
dcj3sjt126com
PHPyii2
Yii 是一个高性能,基于组件的 PHP 框架,用于快速开发现代 Web 应用程序。名字 Yii (读作 易)在中文里有“极致简单与不断演变”两重含义,也可看作 Yes It Is! 的缩写。
Yii 最适合做什么?
Yii 是一个通用的 Web 编程框架,即可以用于开发各种用 PHP 构建的 Web 应用。因为基于组件的框架结构和设计精巧的缓存支持,它特别适合开发大型应
- Linux SSH常用总结
eksliang
linux sshSSHD
转载请出自出处:http://eksliang.iteye.com/blog/2186931 一、连接到远程主机
格式:
ssh name@remoteserver
例如:
ssh
[email protected]
二、连接到远程主机指定的端口
格式:
ssh name@remoteserver -p 22
例如:
ssh i
- 快速上传头像到服务端工具类FaceUtil
gundumw100
android
快速迭代用
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOExceptio
- jQuery入门之怎么使用
ini
JavaScripthtmljqueryWebcss
jQuery的强大我何问起(个人主页:hovertree.com)就不用多说了,那么怎么使用jQuery呢?
首先,下载jquery。下载地址:http://hovertree.com/hvtart/bjae/b8627323101a4994.htm,一个是压缩版本,一个是未压缩版本,如果在开发测试阶段,可以使用未压缩版本,实际应用一般使用压缩版本(min)。然后就在页面上引用。
- 带filter的hbase查询优化
kane_xie
查询优化hbaseRandomRowFilter
问题描述
hbase scan数据缓慢,server端出现LeaseException。hbase写入缓慢。
问题原因
直接原因是: hbase client端每次和regionserver交互的时候,都会在服务器端生成一个Lease,Lease的有效期由参数hbase.regionserver.lease.period确定。如果hbase scan需
- java设计模式-单例模式
men4661273
java单例枚举反射IOC
单例模式1,饿汉模式
//饿汉式单例类.在类初始化时,已经自行实例化
public class Singleton1 {
//私有的默认构造函数
private Singleton1() {}
//已经自行实例化
private static final Singleton1 singl
- mongodb 查询某一天所有信息的3种方法,根据日期查询
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
// mongodb的查询真让人难以琢磨,就查询单天信息,都需要花费一番功夫才行。
// 第一种方式:
coll.aggregate([
{$project:{sendDate: {$substr: ['$sendTime', 0, 10]}, sendTime: 1, content:1}},
{$match:{sendDate: '2015-
- 二维数组转换成JSON
tangqi609567707
java二维数组json
原文出处:http://blog.csdn.net/springsen/article/details/7833596
public class Demo {
public static void main(String[] args) { String[][] blogL
- erlang supervisor
wudixiaotie
erlang
定义supervisor时,如果是监控celuesimple_one_for_one则删除children的时候就用supervisor:terminate_child (SupModuleName, ChildPid),如果shutdown策略选择的是brutal_kill,那么supervisor会调用exit(ChildPid, kill),这样的话如果Child的behavior是gen_