Pytorch之第一次构建神经网络(二)

本文为第一次构建神经网络系列第二篇

探讨如何向神经网络中传入参数,得到返回结果

系列第一篇:https://blog.csdn.net/qq_37385726/article/details/81740386

系列第二篇:https://blog.csdn.net/qq_37385726/article/details/81742247

系列第三篇:https://blog.csdn.net/qq_37385726/article/details/81744802

系列第四篇:https://blog.csdn.net/qq_37385726/article/details/81745510

系列第五篇:https://blog.csdn.net/qq_37385726/article/details/81748635

 

 

目录

1.预构建网络

网络结构

2.向网络传入输入,得到输出


 

1.预构建网络

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        # 1 input image channel, 6 output channels, 5*5 square convolution
        # kernel

        self.conv1 = nn.Conv2d(in_channels=1, out_channels=32, kernel_size=5, stride=1, padding=2)
        self.conv2 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=5, stride=1, padding=2)
        # an affine operation: y = Wx + b
        self.fc1 = nn.Linear(64 * 8 * 8, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        # max pooling over a (2, 2) window
        x = self.conv1(x)
        x = F.max_pool2d(F.relu(x), (2, 2))   #32*16*16
        # If size is a square you can only specify a single number
        x = F.max_pool2d(F.relu(self.conv2(x)), 2)   #64*8*8
        x = x.view(-1, self.num_flat_features(x))
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

    def num_flat_features(self, x):
        size = x.size()[1:] # all dimensions except the batch dimension
        num_features = 1
        for s in size:
            num_features *= s
        return num_features

net = Net()

 

网络结构

Net(
  (conv1): Conv2d(1, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
  (conv2): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
  (fc1): Linear(in_features=4096, out_features=120, bias=True)
  (fc2): Linear(in_features=120, out_features=84, bias=True)
  (fc3): Linear(in_features=84, out_features=10, bias=True)
)

 

 

2.向网络传入输入,得到输出

对于网络类定义时实现的forward函数,该函数的input必须是variable类型的,所以对于网络的输入也要去是variable类型。

所以很多时候,我们可以看见会有一个Variable包起tensor的操作

input的size: 

第一项是batch index

根据上述网络定义in_channels=1,所以输入第二项为1,shape(32,32) 所以3,4项为32,32

  • 传入输入的方式

       将输入的variable作为参数传入到net中,即net(input)

  • 得到输出的方式

       输出即为net(input)调用后的返回值

input = Variable(torch.Tensor(1,1,32,32), requires_grad = True)  
out = net(input)   #将输入作为参数传入网络返回值即为输出
print(out)

输出为   tensor([[-0.1163,  0.0099,  0.0055, -0.0484,  0.1090, -0.0102, -0.1381,  0.0693,
                 -0.0400, -0.0166]], grad_fn=)

 

 

你可能感兴趣的:(Pytorch,Pytorch)