pytorch框架已经使用一段时间了,做个小结
1.直接建立
import torch
import torch.nn.functional as F
class Net1(torch.nn.Module):
def __init__(self):
super(Net1, self).__init__()
self.conv1 = torch.nn.Conv2d(3, 32, 3, 1, 1)
self.dense1 = torch.nn.Linear(32 * 3 * 3, 128)
self.dense2 = torch.nn.Linear(128, 10)
def forward(self, x):
x = F.max_pool2d(F.relu(self.conv1(x)), 2)
x = x.view(x.size(0), -1)
x = F.relu(self.dense1(x))
x = self.dense2(x)
return x
print("Method 1:")
model1 = Net1()
print(model1)
2.使用Sequential建立
import torch
import torch.nn.functional as F
class Net2(torch.nn.Module):
def __init__(self):
super(Net2, self).__init__()
self.conv = torch.nn.Sequential(
torch.nn.Conv2d(3, 32, 3, 1, 1),
torch.nn.ReLU(),
torch.nn.MaxPool2d(2))
self.dense = torch.nn.Sequential(
torch.nn.Linear(32 * 3 * 3, 128),
torch.nn.ReLU(),
torch.nn.Linear(128, 10)
)
def forward(self, x):
conv_out = self.conv(x)
res = conv_out.view(conv_out.size(0), -1)
out = self.dense(res)
return out
print("Method 2:")
model2 = Net2()
print(model2)
3.使用Sequential建立,通过add_module()添加每一层,并且为每一层增加了一个单独的名字
import torch
import torch.nn.functional as F
class Net3(torch.nn.Module):
def __init__(self):
super(Net3, self).__init__()
self.conv=torch.nn.Sequential()
self.conv.add_module("conv1",torch.nn.Conv2d(3, 32, 3, 1, 1))
self.conv.add_module("relu1",torch.nn.ReLU())
self.conv.add_module("pool1",torch.nn.MaxPool2d(2))
self.dense = torch.nn.Sequential()
self.dense.add_module("dense1",torch.nn.Linear(32 * 3 * 3, 128))
self.dense.add_module("relu2",torch.nn.ReLU())
self.dense.add_module("dense2",torch.nn.Linear(128, 10))
def forward(self, x):
conv_out = self.conv1(x)
res = conv_out.view(conv_out.size(0), -1)
out = self.dense(res)
return out
print("Method 3:")
model3 = Net3()
print(model3)
4.使用Sequential建立,通过字典的形式添加每一层,并且设置单独的层名称。
import torch
import torch.nn.functional as F
from collections import OrderedDict
class Net4(torch.nn.Module):
def __init__(self):
super(Net4, self).__init__()
self.conv = torch.nn.Sequential(
OrderedDict(
[
("conv1", torch.nn.Conv2d(3, 32, 3, 1, 1)),
("relu1", torch.nn.ReLU()),
("pool", torch.nn.MaxPool2d(2))
]
))
self.dense = torch.nn.Sequential(
OrderedDict([
("dense1", torch.nn.Linear(32 * 3 * 3, 128)),
("relu2", torch.nn.ReLU()),
("dense2", torch.nn.Linear(128, 10))
])
)
def forward(self, x):
conv_out = self.conv1(x)
res = conv_out.view(conv_out.size(0), -1)
out = self.dense(res)
return out
print("Method 4:")
model4 = Net4()
print(model4)
jupyter notebook下运行
保存整体模型:
import torch
from torch.autograd import Variable
import matplotlib.pyplot as plt
%matplotlib inline
torch.manual_seed(1)
x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1) # x data (tensor), shape=(100, 1)
y = x.pow(2) + 0.2*torch.rand(x.size()) # noisy y data (tensor), shape=(100, 1)
#x, y = Variable(x, requires_grad=False), Variable(y, requires_grad=False)
x = Variable(x,requires_grad=False)
y = Variable(y,requires_grad=False)
net1 = torch.nn.Sequential(
torch.nn.Linear(1,10),
torch.nn.LeakyReLU(0.2,True),
torch.nn.Linear(10,1))
opt = torch.optim.Adam(net1.parameters(),lr=0.01)
loss = torch.nn.MSELoss()
for i in range(300):
prediction = net1(x)
loss_ = loss(prediction,y)
opt.zero_grad()
loss_.backward()
opt.step()
plt.figure(1, figsize=(10, 3))
plt.subplot(131)
plt.title('Net1')
plt.scatter(x.data.numpy(), y.data.numpy())
plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)
torch.save(net1,"model.pth")
torch.save(net1.state_dict(), 'net_params.pkl') # save only the parameters
net2 = torch.load("model.pth")
prediction_ = net2(x)
plt.subplot(132)
plt.title('Net2')
plt.scatter(x.data.numpy(), y.data.numpy())
plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)
net3 = torch.nn.Sequential(
torch.nn.Linear(1, 10),
torch.nn.ReLU(),
torch.nn.Linear(10, 1)
)
net3.load_state_dict(torch.load('net_params.pkl'))
prediction = net3(x)
plt.subplot(133)
plt.title('Net3')
plt.scatter(x.data.numpy(), y.data.numpy())
plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)
plt.show()
import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.utils.data as Data
import torchvision
from matplotlib import pyplot as plt
%matplotlib inline
torch.manual_seed(1)
# Hyper Parameters
EPOCH = 1 # train the training data n times, to save time, we just train 1 epoch
BATCH_SIZE = 50
LR = 0.001 # learning rate
DOWNLOAD_MNIST = False # set to False if you have downloaded
# Mnist digits dataset
train_data = torchvision.datasets.MNIST(
root='./mnist/',
train=True,
transform=torchvision.transforms.ToTensor(),
download=DOWNLOAD_MNIST,
)
train_loader = Data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)
test_data = torchvision.datasets.MNIST(root='./mnist/', train=False)
test_x = Variable(torch.unsqueeze(test_data.test_data, dim=1)).type(torch.FloatTensor)[:2000]/255.
# shape from (2000, 28, 28) to (2000, 1, 28, 28), value in range(0,1)
test_y = test_data.test_labels[:2000]
class CNN(nn.Module):
def __init__(self):
super(CNN,self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(1,16,5,1,2),
nn.LeakyReLU(0.2),
nn.MaxPool2d(2)
)
self.conv2 = nn.Sequential(
nn.Conv2d(16,32,3,1,1),
nn.LeakyReLU(0.2),
nn.MaxPool2d(2)
)
self.out=nn.Linear(32*7*7,10)
def forward(self,x):
x=self.conv1(x)
x=self.conv2(x)
x=x.view(x.size(0),-1)
output = self.out(x)
return output,x
cnn = CNN()
optimizer = torch.optim.Adam(cnn.parameters(),lr=0.001)
loss_func = nn.CrossEntropyLoss()
for epoch in range(EPOCH):
for step, (x, y) in enumerate(train_loader):
b_x = Variable(x) # batch x
b_y = Variable(y) # batch y
#print(b_x,b_y)
output = cnn(b_x)[0]
loss = loss_func(output, b_y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if step % 100 == 0:
test_output, last_layer = cnn(test_x)
pred_y = torch.max(test_output, 1)[1].data.squeeze()
accuracy = (pred_y == test_y).sum().item() / float(test_y.size(0))
print('Epoch: ', epoch, '| train loss: %.4f' % loss.item(), '| test accuracy: %.2f' % accuracy)
torch.save(cnn,"model.pkl")
test_output, _ = cnn(test_x[:10])
pred_y = torch.max(test_output, 1)[1].data.numpy().squeeze()
print(pred_y, 'prediction number')
print(test_y[:10].numpy(), 'real number')
test_output, _ = cnn_(test_x[:10])
pred_y = torch.max(test_output, 1)[1].data.numpy().squeeze()
print(pred_y, 'prediction number')
print(test_y[:10].numpy(), 'real number')