klass
每个Java对象的对象头里,_klass 字段会指向一个VM内部用来记录类的元数据用的 InstanceKlass 对象;InsanceKlass 里有个 _java_mirror 字段,指向该类所对应的Java镜像——java.lang.Class实例。HotSpot VM 会给 Class 对象注入一个隐藏字段 “klass”,用于指回到其对应的 InstanceKlass 对象。这样,klass 与 mirror 之间就有双向引用,可以来回导航。
这个模型里,java.lang.Class 实例并不负责记录真正的类元数据,而只是对VM内部的 InstanceKlass 对象的一个包装供 Java 的反射访问用。
Java object ---> InstanceKlass <---> java.lang.Class instance(java mirror)
[_mark] [...] [klass](隐藏字段)
[_klass] [_java_mirror]
[fileds] [...]
注意
验证类是否符合 JVM规范,安全性检查
用 UE 等支持二进制的编辑器修改 HelloWorld.class 的魔数,在控制台运行
E:\git\jvm\out\production\jvm>java cn.itcast.jvm.t5.HelloWorld
Error: A JNI error has occurred, please check your installation and try again
Exception in thread "main" java.lang.ClassFormatError: Incompatible magic value 3405691578 in class file cn/itcast/jvm/t5/HelloWorld
at java.lang.ClassLoader.defineClass1(Native Method)
at java.lang.ClassLoader.defineClass(ClassLoader.java:763)
at java.security.SecureClassLoader.defineClass(SecureClassLoader.java:142)
at java.net.URLClassLoader.defineClass(URLClassLoader.java:467)
at java.net.URLClassLoader.access$100(URLClassLoader.java:73)
at java.net.URLClassLoader$1.run(URLClassLoader.java:368)
at java.net.URLClassLoader$1.run(URLClassLoader.java:362)
at java.security.AccessController.doPrivileged(Native Method)
at java.net.URLClassLoader.findClass(URLClassLoader.java:361)
at java.lang.ClassLoader.loadClass(ClassLoader.java:424)
at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:331)
at java.lang.ClassLoader.loadClass(ClassLoader.java:357)
at sun.launcher.LauncherHelper.checkAndLoadMain(LauncherHelper.java:495)
为 static 变量分配空间,设置默认值
将常量池中的符号引用解析为直接引用
符号引用:仅仅是个符号,不知道变量在内存中的实际地址
直接引用:知道变量在内存中的实际地址
package cn.itcast.jvm.t3.load;
/**
* 解析的含义
*/
public class Load2 {
public static void main(String[] args) throws ClassNotFoundException, IOException {
ClassLoader classloader = Load2.class.getClassLoader();
// loadClass 方法不会导致类的解析和初始化
Class<?> c = classloader.loadClass("cn.itcast.jvm.t3.load.C");
// new C();
System.in.read();
}
}
class C {
D d = new D();
}
class D {
}
()V
方法初始化即调用
,虚拟机会保证这个类的『构造方法』的线程安全
概括得说,类初始化是【懒惰的】
不会导致类初始化的情况
访问类的 static final 静态常量(基本类型和字符串)不会触发初始化
类对象.class 不会触发初始化
创建该类的数组不会触发初始化
类加载器的 loadClass 方法
Class.forName 的参数 2 为 false 时
实验
class A {
static int a = 0;
static {
System.out.println("a init");
}
}
class B extends A {
final static double b = 5.0;
static boolean c = false;
static {
System.out.println("b init");
}
}
验证(实验时请先全部注释,每次只执行其中一个)
public class Load3 {
static {
System.out.println("main init");
}
public static void main(String[] args) throws ClassNotFoundException {
// 1. 静态常量(基本类型和字符串)不会触发初始化
System.out.println(B.b);
// 2. 类对象.class 不会触发初始化
System.out.println(B.class);
// 3. 创建该类的数组不会触发初始化
System.out.println(new B[0]);
// 4. 不会初始化类 B,但会加载 B、A
ClassLoader cl = Thread.currentThread().getContextClassLoader();
cl.loadClass("cn.itcast.jvm.t3.B");
// 5. 不会初始化类 B,但会加载 B、A
ClassLoader c2 = Thread.currentThread().getContextClassLoader();
Class.forName("cn.itcast.jvm.t3.B", false, c2);
// 1. 首次访问这个类的静态变量或静态方法时
System.out.println(A.a);
// 2. 子类初始化,如果父类还没初始化,会引发
System.out.println(B.c);
// 3. 子类访问父类静态变量,只触发父类初始化
System.out.println(B.a);
// 4. 会初始化类 B,并先初始化类 A
Class.forName("cn.itcast.jvm.t3.B");
}
}
从字节码分析,使用 a,b,c 这三个常量是否会导致 E 初始化
public class Load4 {
public static void main(String[] args) {
System.out.println(E.a);
System.out.println(E.b);
System.out.println(E.c);
}
}
class E {
public static final int a = 10;
public static final String b = "hello";
public static final Integer c = 20;
}
典型应用 - 完成懒惰初始化单例模式
public final class Singleton {
private Singleton() { }
// 内部类中保存单例
private static class LazyHolder {
static final Singleton INSTANCE = new Singleton();
}
// 第一次调用 getInstance 方法,才会导致内部类加载和初始化其静态成员
public static Singleton getInstance() {
return LazyHolder.INSTANCE;
}
}
以上的实现特点是:
以 JDK 8 为例:
名称 | 加载哪的类 | 说明 |
---|---|---|
Bootstrap ClassLoader | JAVA_HOME/jre/lib | 无法直接访问 |
Extension ClassLoader | JAVA_HOME/jre/lib/ext | 上级为 Bootstrap,显示为 null |
Application ClassLoader | classpath | 上级为 Extension |
自定义类加载器 | 自定义 | 上级为 Application |
用 Bootstrap 类加载器加载类:
package cn.itcast.jvm.t3.load;
public class F {
static {
System.out.println("bootstrap F init");
}
}
执行
package cn.itcast.jvm.t3.load;
public class Load5_1 {
public static void main(String[] args) throws ClassNotFoundException {
Class<?> aClass = Class.forName("cn.itcast.jvm.t3.load.F");
System.out.println(aClass.getClassLoader());
}
}
输出
E:\git\jvm\out\production\jvm>java -Xbootclasspath/a:. cn.itcast.jvm.t3.load.Load5
bootstrap F init
null
java -Xbootclasspath:
java -Xbootclasspath/a:<追加路径>
java -Xbootclasspath/p:<追加路径>
package cn.itcast.jvm.t3.load;
public class G {
static {
System.out.println("classpath G init");
}
}
执行
public class Load5_2 {
public static void main(String[] args) throws ClassNotFoundException {
Class<?> aClass = Class.forName("cn.itcast.jvm.t3.load.G");
System.out.println(aClass.getClassLoader());
}
}
输出
classpath G init
sun.misc.Launcher$AppClassLoader@18b4aac2
写一个同名的类
package cn.itcast.jvm.t3.load;
public class G {
static {
System.out.println("ext G init");
}
}
打个 jar 包
E:\git\jvm\out\production\jvm>jar -cvf my.jar cn/itcast/jvm/t3/load/G.class
已添加清单
正在添加: cn/itcast/jvm/t3/load/G.class(输入 = 481) (输出 = 322)(压缩了 33%)
将 jar 包拷贝到 JAVA_HOME/jre/lib/ext
重新执行 Load5_2
输出
ext G init
sun.misc.Launcher$ExtClassLoader@29453f44
所谓的双亲委派,就是指调用类加载器的 loadClass 方法时,查找类的规则
注意
这里的双亲,翻译为上级似乎更为合适,因为它们并没有继承关系
protected Class<?> loadClass(String name, boolean resolve)
throws ClassNotFoundException {
synchronized (getClassLoadingLock(name)) {
// 1. 检查该类是否已经加载
Class<?> c = findLoadedClass(name);
if (c == null) {
long t0 = System.nanoTime();
try {
if (parent != null) {
// 2. 有上级的话,委派上级 loadClass
c = parent.loadClass(name, false);
} else {
// 3. 如果没有上级了(ExtClassLoader),则委派 BootstrapClassLoader
c = findBootstrapClassOrNull(name);
}
} catch (ClassNotFoundException e) {
}
if (c == null) {
long t1 = System.nanoTime();
// 4. 每一层找不到,调用 findClass 方法(每个类加载器自己扩展)来加载
c = findClass(name);
// 5. 记录耗时
sun.misc.PerfCounter.getParentDelegationTime().addTime(t1 - t0);
sun.misc.PerfCounter.getFindClassTime().addElapsedTimeFrom(t1);
sun.misc.PerfCounter.getFindClasses().increment();
}
}
if (resolve) {
resolveClass(c);
}
return c;
}
}
例如:
public class Load5_3 {
public static void main(String[] args) throws ClassNotFoundException {
Class<?> aClass = Load5_3.class.getClassLoader()
.loadClass("cn.itcast.jvm.t3.load.H");
System.out.println(aClass.getClassLoader());
}
}
执行流程为:
sun.misc.Launcher$AppClassLoader
//1 处, 开始查看已加载的类,结果没有sun.misc.Launcher$AppClassLoader
// 2 处,委派上级 sun.misc.Launcher$ExtClassLoader.loadClass()
sun.misc.Launcher$ExtClassLoader
// 1 处,查看已加载的类,结果没有sun.misc.Launcher$ExtClassLoader
// 3 处,没有上级了,则委派 BootstrapClassLoader
查找BootstrapClassLoader
是在 JAVA_HOME/jre/lib 下找 H 这个类,显然没有sun.misc.Launcher$ExtClassLoader
// 4 处,调用自己的 findClass 方法,是在 JAVA_HOME/jre/lib/ext 下找 H 这个类,显然没有,回到 sun.misc.Launcher$AppClassLoader
的 // 2 处sun.misc.Launcher$AppClassLoader
// 4 处,调用它自己的 findClass 方法,在 classpath 下查找,找到了我们在使用 JDBC 时,都需要加载 Driver 驱动,不知道你注意到没有,不写
Class.forName("com.mysql.jdbc.Driver")
也是可以让 com.mysql.jdbc.Driver
正确加载的,你知道是怎么做的吗?
让我们追踪一下源码:
public class DriverManager {
// 注册驱动的集合
private final static CopyOnWriteArrayList<DriverInfo> registeredDrivers
= new CopyOnWriteArrayList<>();
// 初始化驱动
static {
loadInitialDrivers();
println("JDBC DriverManager initialized");
}
先不看别的,看看 DriverManager 的类加载器:
System.out.println(DriverManager.class.getClassLoader());
打印 null,表示它的类加载器是 Bootstrap ClassLoader,会到 JAVA_HOME/jre/lib 下搜索类,但 JAVA_HOME/jre/lib 下显然没有 mysql-connector-java-5.1.47.jar 包,这样问题来了,在 DriverManager 的静态代码块中,怎么能正确加载 com.mysql.jdbc.Driver 呢?
继续看 loadInitialDrivers() 方法:
private static void loadInitialDrivers() {
String drivers;
try {
drivers = AccessController.doPrivileged(new PrivilegedAction<String>() {
public String run() {
return System.getProperty("jdbc.drivers");
}
});
} catch (Exception ex) {
drivers = null;
}
// 1)使用 ServiceLoader 机制加载驱动,即 SPI
AccessController.doPrivileged(new PrivilegedAction<Void>() {
public Void run() {
ServiceLoader<Driver> loadedDrivers = ServiceLoader.load(Driver.class);
Iterator<Driver> driversIterator = loadedDrivers.iterator();
try{
while(driversIterator.hasNext()) {
driversIterator.next();
}
} catch(Throwable t) {
// Do nothing
}
return null;
}
});
println("DriverManager.initialize: jdbc.drivers = " + drivers);
// 2)使用 jdbc.drivers 定义的驱动名加载驱动
if (drivers == null || drivers.equals("")) {
return;
}
String[] driversList = drivers.split(":");
println("number of Drivers:" + driversList.length);
for (String aDriver : driversList) {
try {
println("DriverManager.Initialize: loading " + aDriver);
// 这里的 ClassLoader.getSystemClassLoader() 就是应用程序类加载器
Class.forName(aDriver, true, ClassLoader.getSystemClassLoader());
} catch (Exception ex) {
println("DriverManager.Initialize: load failed: " + ex);
}
}
}
先看 2)发现它最后是使用 Class.forName 完成类的加载和初始化,关联的是应用程序类加载器,因此可以顺利完成类加载
再看 1)它就是大名鼎鼎的 Service Provider Interface (SPI)
约定如下,在 jar 包的 META-INF/services 包下,以接口全限定名名为文件,文件内容是实现类名称
这样就可以使用
ServiceLoader<接口类型> allImpls = ServiceLoader.load(接口类型.class);
Iterator<接口类型> iter = allImpls.iterator();
while(iter.hasNext()) {
iter.next();
}
来得到实现类,体现的是【面向接口编程+解耦】的思想,在下面一些框架中都运用了此思想:
接着看 ServiceLoader.load 方法:
public static <S> ServiceLoader<S> load(Class<S> service) {
// 获取线程上下文类加载器
ClassLoader cl = Thread.currentThread().getContextClassLoader();
return ServiceLoader.load(service, cl);
}
线程上下文类加载器是当前线程使用的类加载器,默认就是应用程序类加载器,它内部又是由 Class.forName 调用了线程上下文类加载器完成类加载,具体代码在 ServiceLoader 的内部类 LazyIterator 中:
private S nextService() {
if (!hasNextService())
throw new NoSuchElementException();
String cn = nextName;
nextName = null;
Class<?> c = null;
try {
c = Class.forName(cn, false, loader);
} catch (ClassNotFoundException x) {
fail(service,
"Provider " + cn + " not found");
}
if (!service.isAssignableFrom(c)) {
fail(service,
"Provider " + cn + " not a subtype");
}
try {
S p = service.cast(c.newInstance());
providers.put(cn, p);
return p;
} catch (Throwable x) {
fail(service,
"Provider " + cn + " could not be instantiated",
x);
}
throw new Error(); // This cannot happen
}
问问自己,什么时候需要自定义类加载器
步骤:
示例:
准备好两个类文件放入 E:\myclasspath,它实现了 java.util.Map 接口,可以先反编译看一下:
class MyClassLoader extends ClassLoader {
@Override // name 就是类名称
protected Class<?> findClass(String name) throws ClassNotFoundException {
String path = "e:\\myclasspath\\" + name + ".class";
try {
ByteArrayOutputStream os = new ByteArrayOutputStream();
Files.copy(Paths.get(path), os);
// 得到字节数组
byte[] bytes = os.toByteArray();
// byte[] -> *.class
return defineClass(name, bytes, 0, bytes.length);
} catch (IOException e) {
e.printStackTrace();
throw new ClassNotFoundException("类文件未找到", e);
}
}
}
public class MyClassLoder1 extends ClassLoader {
@Override
protected Class<?> findClass(String name) throws ClassNotFoundException {
String path = "D:\\classpath\\" + "Demo"+ ".class";
try {
FileInputStream in = new FileInputStream(new File(path));
ByteArrayOutputStream baos = new ByteArrayOutputStream();
int len = -1;
byte[] b = new byte[1024];
while ((len = in.read(b)) != -1) {
baos.write(b, 0, len);
}
byte[] bytes = baos.toByteArray();
in.close();
baos.close();
return defineClass(name, bytes, 0, bytes.length);
} catch (IOException e) {
e.printStackTrace();
return null;
}
}
public static void main(String[] args) throws Exception {
MyClassLoder1 myClassLoder1 = new MyClassLoder1();
Class<?> demo = myClassLoder1.loadClass("com.itheima.Demo");
Object o = demo.newInstance();
System.out.println(o);
}
}
类加载器的命名空间 是有类加载器本身以及所有父加载器所加载出来 的binary name(full class name)组成.
①:在同一个命名空间里,不允许出现二个完全一样的binary name。
②:在不同的命名空间种,可以出现二个相同的binary name。但是二者对应的Class对象是相互不能感知到的,就是说Class对象的类型 是不一样的。
③:子加载器的命名空间中的binary name对应的类中可以访问父加 载器命名空间中binary name对应的类,反之不行
public static void main(String[] args) throws Exception {
MyClassLoader classLoader = new MyClassLoader();
Class<?> c1 = classLoader.loadClass("MapImpl1");
Class<?> c2 = classLoader.loadClass("MapImpl1");
System.out.println(c1 == c2);//true
MyClassLoader classLoader2 = new MyClassLoader();
Class<?> c3 = classLoader2.loadClass("MapImpl1");
System.out.println(c1 == c3);//false
c1.newInstance();
}
同一个MapImpl1文件 被我们的不同的类加载器去加载,那么我们 的jvm内存种会生成二个对应的Person的Class对象,而且这二个对应的Class 对象是相互不可见的(通过Class对象反射创建的实例对象相互是不能够兼容的
不能相互转型) 这一点也很好的解释了【双亲委派模型的好处】
关于java对象头的参考博文:
https://blog.csdn.net/zqz_zqz/article/details/70246212