利用Tensorflow里的LSTM对北京PM2.5数据集Beijing PM2.5 Data Data Set进行预测

课程作业。

数据集:Beijing PM2.5 Data Data Set

这个数据集里有北京2010-2014的天气数据。每小时一条,适合用于回归模型。

利用Tensorflow里的LSTM对北京PM2.5数据集Beijing PM2.5 Data Data Set进行预测_第1张图片

这里我对数据进行了标准化处理

利用Tensorflow里的LSTM对北京PM2.5数据集Beijing PM2.5 Data Data Set进行预测_第2张图片

在学习LSTM的时候这两篇文章给了我很大帮助:

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

https://www.zybuluo.com/hanbingtao/note/581764


直接上代码,代码很大程度上参考了某篇博文,在这里暂时找不到原代码链接了,以后有机会再补上。

# -*- coding: utf-8 -*-
"""
Created on Wed Jun  6 10:56:52 2018

@author: Administrator
"""

import tensorflow as tf
import pandas as pd
import numpy as np
import csv

tf.reset_default_graph()

rnn_unit = 50       #the amount of hidden lstm units
batch_size = 72     #the amount of data trained every time
input_size = 8      #size of input
output_size = 1     #size of output
lr = 0.006           #learn rate
train_x, train_y = [], []   #

f = open('C:\\Users\\Administrator\\Desktop\\BJair\\BjAirDat4.csv',encoding='UTF-8')
df = pd.read_csv(f) #read the csv file
#get data, use the data between 2010 ans 1013 for train,the data of 2014 as exam

weatherdata = df.iloc[0:39312 ,5:13]  #weather with 7 items, not including PM2.5, for train
pm25data = df.iloc[0+batch_size:39312+batch_size ,5:6]  #pm2.5 data, for train
weathertest = df.iloc[39312:, 5:13]    #weatherdata with 7 items, not including PM2.5, for exam
pm25test = df.iloc[39312:, 5:6]  #pm2.5 data, for exam

#train_x is a tensor which [?,batch_size,input_size]
#train_y is a tensor which [?,batch_size,output_size]
i = 0
while i < len(weatherdata):
    x = weatherdata[i:i+batch_size].values  #conver weatherdata to a tensor
    y = pm25data[i:i+batch_size].values     #the same with the pm25data
    train_x.append(x.tolist())  #push them into train_x ans train_y
    train_y.append(y.tolist())
    i += batch_size

#placeholder
X = tf.placeholder(tf.float32, [None, batch_size, input_size])    #a placeholder as the input tensor
Y = tf.placeholder(tf.float32, [None, batch_size, output_size])   #the lable

#initialize the weights and biases [7,50] [50,1] 
weights = {
            'in':tf.Variable(tf.random_normal([input_size, rnn_unit])),
            'out':tf.Variable(tf.random_normal([rnn_unit, output_size]))
        }

biases = {
            'in':tf.Variable(tf.random_normal([batch_size, rnn_unit])),
            'out':tf.Variable(tf.random_normal([batch_size, output_size]))
        }

def lstm(batch):
    w_in = weights['in']
    b_in = biases['in']
    w_out = weights['out']
    b_out = biases['out']
    #convert the tensor(X Accepts value from outside function) to a 2-dimensional tensor, [?*7]
    input_ = tf.reshape(X, [-1, input_size])  
    #make matrix multiplication between input_ and w_in, then add b_in
    input_rnn = tf.matmul(input_, w_in) + b_in   
    #convert input_rnn to a 3-dimensional tensor as the input of BaicSTMCell
    input_rnn = tf.reshape(input_rnn, [-1, batch, rnn_unit])
    #BasicLSTMCell cell,the amount of rnn_unit
    cell = tf.nn.rnn_cell.BasicLSTMCell(rnn_unit)
    #initial cell,batch_size is equal with the input parameter BATCH
    init_state = cell.zero_state(batch, dtype = tf.float32)
    #outputs is a tensor of shape [batch_size, max_time, cell_state_size]
    #final_state is a tensor of shape [batch_size, cell_state_size]
    #Create a Cell
    #time_major = True ==> Tensorshape [max_time, batch_size, ...] something goes wrong when FALSE
    output_rnn, final_state = tf.nn.dynamic_rnn(cell, input_rnn, initial_state = init_state, dtype = tf.float32, time_major = True)   
    #convert the output tensor to a 2-dimensional tensor, then calculate the output
    output = tf.reshape(output_rnn, [-1, rnn_unit])    
    #make matrix multiplication between output and w_out, then add b_out
    pred = tf.matmul(output, w_out) + b_out
    return pred,final_state


def train_lstm():
    print('start train lstm') 
    print(len(train_x))
    global batch_size
    pred,_ = lstm(batch_size)
    #calculate the loss, use the sum of variance between PRED and Y
    ##
    ##loss need to be improved
    ##
    loss = tf.reduce_sum(tf.square(tf.reshape(pred, [-1]) - tf.reshape(Y, [-1])))  
    #use lr as the learn rate, to make the loss minimize
    train_op = tf.train.AdamOptimizer(lr).minimize(loss)   
    #save the model
    saver = tf.train.Saver(tf.global_variables())
    
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        for i in range(1000):
            step = 0
            start = 0
            end = start + 1
            while(end < len(train_x)-1):
                loss_ = sess.run([train_op, loss], feed_dict = {X:train_x[start:end], Y:train_y[start+1:end+1]})
                start += 1
                end += 1
                if step%100 == 0:
                    print('round: ' , i , '  step: ' , step, '  loss : ' , loss_)
                if step % 1000 == 0:
                    saver.save(sess, "C:\\Users\\Administrator\\Desktop\\moxing\\model.ckpt")
                    print('save model')
                step += 1
                
train_lstm()

def predection():
    prev_seq = weathertest.values 
    predict = []
    accurate = []
    pred, _ = lstm(72)  
    saver = tf.train.Saver(tf.global_variables()) 
    with tf.Session() as sess:     
        saver.restore(sess, "C:\\Users\\Administrator\\Desktop\\moxing\\model.ckpt")
        start = 0
        end = start+72
        while(end < len(prev_seq)-100):
            next_seq = sess.run(pred, feed_dict = {X:[prev_seq[start:end]]})
            predict.append(next_seq[0:24].tolist())
            accurate.append(pm25test[end:end+24].values.tolist())
            start = start + 96
            end = end +96
            
    s = np.subtract(predict, accurate)
    MSE = np.mean(np.multiply(s, s))
    
    print(MSE)
          
#predection()






利用Tensorflow里的LSTM对北京PM2.5数据集Beijing PM2.5 Data Data Set进行预测_第3张图片

训练时候效果并不咋样

测试集的均方误差:


其实我也不知道怎么判断效果好不好



你可能感兴趣的:(Machine,Learning)