- nextjs学习笔记
ainuo5213
web前端框架学习nextreactreact服务端渲染next入门
由于本人最近在学习jocky老师的React16.8+Next.js+Koa2开发Github全栈项目关于react的服务端重构项目,然后跟着老师的视频做笔记,记录下自己的所学知识。目录结构pages(必需):pages目录是nextjs中最终要的一个目录,这个目录的每一个文件都会对应到每一个页面,可以根据地址栏的路由进行跳转。若pages下的js文件在一个目录下,那么nextjs默认会将这个
- MySQL(141)如何处理重复数据问题?
辞暮尔尔-烟火年年
MySQLmysql数据库
处理重复数据问题是数据管理中的一个常见挑战。重复数据会影响数据库的性能、占用资源,并且可能导致数据分析结果的偏差。以下是处理重复数据问题的详细步骤以及结合代码的示例。一、识别重复数据首先,需要识别数据库中的重复数据。可以使用SQL查询来查找重复的数据。示例:假设我们有一个名为employees的表,其中包含以下字段:id、name和email。CREATETABLEemployees(idINTP
- OpenCV中常用特征提取算法(SURF、ORB、SIFT和AKAZE)用法示例(C++和Python)
点云SLAM
图形图像处理opencv算法ORB算法SIFT算法SURF算法AKAZE算法计算机视觉
OpenCV中提供了多种常用的特征提取算法,广泛应用于图像匹配、拼接、SLAM、物体识别等任务。以下是OpenCV中几个主流特征提取算法的用法总结与代码示例,涵盖C++和Python两个版本。常用特征提取算法列表算法特点是否需额外模块SIFT(尺度不变特征)稳定性强、可旋转缩放xfeatures2d模块SURF(加速稳健特征)快速但专利保护xfeatures2d模块ORB(OrientedFAST
- OpenCV学习(二)-二维、三维识别
香蕉可乐荷包蛋
#OpenCVopencv学习人工智能
OpenCV是一个功能强大的计算机视觉库,可以用于识别和处理二维图像和三维图像。以下是关于二维图像和三维图像识别的基础知识和示例代码。1.二维图像识别二维图像识别通常包括图像分类、对象检测、特征提取等任务。以下是一些常见的操作:1.1图像分类使用预训练模型对图像进行分类,例如使用深度学习模型(如ResNet、MobileNet等)。importcv2#加载预训练的深度学习模型net=cv2.dnn
- 听书赚钱的app哪个最好,十大听书赚钱app推荐
高省张导师
在探讨听书赚钱的App哪个最好时,需要考虑多个因素,包括资源丰富度、用户体验、赚钱机制以及用户口碑等。以下是根据当前信息整理的十大听书赚钱App推荐,供您参考:1喜马拉雅极速版特点:作为国内领先的音频分享平台,喜马拉雅极速版拥有海量的有声内容,涵盖小说、评书、相声等多种类型。用户可以通过完成听书任务、签到、分享等操作获取收益,合理利用时间,每天能轻松赚取一定金额。优势:资源丰富,用户基数大,赚钱机
- 脱岗离岗逃岗监测识别软件系统平台 标检测算法#YOLO
值班脱岗智能监测识别系统是一种利用AI视频智能分析技术的智能化系统,能够对办公工作岗位区域、岗亭、值班室、生产线岗位等进行7*24小时不间断实时监测。该系统的出现,有助于提高工作效率,确保工作秩序的正常运行,同时也能有效避免值班人员脱岗、懈怠等现象的发生。该系统的工作原理是通过高清摄像头捕捉实时画面,然后利用AI视频智能分析技术对画面进行实时分析,识别出是否有人脱岗、懈怠或者有其他异常情况发生。当
- 智界R7智驾功能和性能评价
TheWanderers
智能驾驶智界
一、智驾行车能力标题硬件配置与系统架构感知硬件:Max/Ultra版搭载1个192线激光雷达、3个毫米波雷达(含1个4D成像雷达)、12个超声波雷达、11个高清摄像头(含前向800万像素双目+鱼眼镜头)。Pro版未配备激光雷达,但保留3个毫米波雷达和10个摄像头。核心算法:HUAWEIADS3.0系统,基于端到端架构,整合感知、决策与控制模块,支持全场景目标识别(如非标准障碍物、夜间行人)。算力支
- YOLOv5改进策略|YOLOv5 ⾃主检查和跟踪相关的任务|基于视觉的⽆⼈⽔⾯舰艇⾃主导航 极端海洋条件
斌擎人工智能官方账号
YOLO人工智能YOLOv5目标检测计算机视觉深度学习自主导航
目录介绍解决方案目标检测的视觉结论视觉感知是无人水面舰艇(USV)自主导航的重要组成部分,特别是与自主检查和跟踪相关的任务。这些任务涉及基于视觉的导航技术来识别导航目标。海洋环境中极端天气条件下的能⻅度降低使得基于视觉的方法难以正常工作。为了克服这些问题,本文提出了一种基于视觉的自主导航框架,用于在极端海洋条件下跟踪目标物体。所提出的框架由一个集成感知管道组成,该管道使用生成对抗网络(GAN)来消
- 睡岗离岗检测算法 Python
燧机科技SuiJi
人工智能python算法深度学习神经网络
睡岗离岗检测算法的核心在于实时监控和智能分析,睡岗离岗检测算法通过安装在关键区域的监控摄像头,系统能够捕捉到员工的活动画面。当系统检测到人体位置长时间未发生变化时,将启动睡姿分类器。该分类器能够识别多种睡姿,如趴在桌子上睡、坐在凳子上后仰睡等。一旦识别为睡姿,系统将立即触发告警机制。这可以通过向管理人员发送警报信号,或通过语音提醒员工的方式实现。睡岗离岗检测算法在多种场景下均有广泛应用。该算法能够
- 5万人流挤地铁如何追踪?陌讯算法实战FPS飙升300%
开篇痛点在智慧城市安防场景中,传统视觉算法常面临“三难困境”:低光照漏检率飙升(夜间误报率超30%)、人群遮挡ID切换混乱(MOTA指标<50%)、硬件资源吃紧(1080P视频流处理>200ms)。某省会交警平台曾反馈:“雨雾天车牌识别准确率骤降至65%,追踪目标平均5分钟丢失1次”。技术解析:动态多目标蒸馏网络陌讯视觉算法创新性融合多任务蒸馏架构与时空注意力机制,攻克复杂场景泛化难题。核心公式创
- 雨天障碍物漏检?陌讯多模态算法实测 98% 准确率
2501_92474711
算法目标跟踪人工智能计算机视觉
开篇痛点:自动驾驶视觉系统的“暗礁”在自动驾驶感知层,路面障碍物识别堪称“生命线工程”。传统视觉算法在复杂场景下常面临三重困境:雨天水雾导致特征模糊时漏检率高达25%,逆光环境下小目标(如碎石、井盖)检出率不足60%,而追求高精度又会导致帧率跌破20FPS,难以满足实时性要求[1]。某车企实测数据显示,传统YOLOv8在城郊混合路况中,因障碍物识别延迟引发的决策偏差占测试事故的37%,这些问题成为
- 深入理解浏览器解析机制和XSS向量编码
lq_ioi_pl
xss前端编码
URL编码"javascript:alert(1)"---->%6a%61%76%61%73%63%72%69%70%74:%61%6c%65%72%74%28%31%29aaa-------浏览器解析不了。页面识别在url解码之前,在识别标签和属性的时候还没解码,页面就不认识这串编码,不会把它们当作JS代码执行页面识别的时候,已经进行HTML实体解码,变成了aaaaa浏览器会识别它为可执行JS代
- 清平乐-同网友咏金庸女配角
凭栏翠袖
起初是情情听王菲唱《红豆》有感,填了一支清平乐,江南小糊涂和春水愁纷纷步韵,其内容被凭栏翠袖看来想起金庸笔下几名女配,于是继续次韵,大家越玩越嗨......排序按时间先后:翻作《红豆》兼咏包惜弱——情情未携双手,谁挽春时候。此物相思抛尽后,熬作缠绵伤口。我心半是温柔,我心半是哀愁。世事终难谙透,惟看细水长流。咏林朝英——江南小糊涂置之纤手,愿毕生相候。几度风刀霜剑后,一字忍轻出口。箫声漫诉轻柔,相
- FunASR Paraformer-zh:高效中文端到端语音识别方案全解
项目简介FunASR是阿里巴巴达摩院开源的端到端语音识别工具箱,集成了多种语音识别、语音活动检测(VAD)、说话人识别等模块。其中paraformer-zh和paraformer-zh-streaming是针对中文语音识别任务优化的端到端模型,分别适用于离线和流式场景。Paraformer采用并行Transformer架构,兼具高精度和低延迟,广泛应用于智能客服、会议转写、语音助手等场景。主要特点
- 头盔识别误报率高?陌讯YOLOv7优化方案实测准确率达99%!
开篇痛点:算法失效的致命时刻在智慧交通领域,电动车头盔识别长期面临三大痛点:漏检危机:行人遮挡、雨天反光导致传统算法漏检率高达15%(某头部车企实测数据)误报泛滥:相似物体(背包、安全帽)误识别率超20%实时性缺陷:开源模型在1080P视频流中处理延时>200ms,无法满足实时预警需求技术解析:陌讯算法三重创新架构graphTDA[双路输入]-->B[多尺度特征融合模块]B-->C[空间注意力机制
- Spring AI-15.Spring AI API
程序员勇哥
人工智能(AI)Java全套教程SpringAI人工智能springjavaSpringAI
SpringAI-15.SpringAIAPISpringAIAPI涵盖了广泛的功能。每个主要功能都在其专门的部分中详细介绍。以下是可用的关键功能概述:简介SpringAIAPI提供跨AI供应商的可移植模型API,适用于聊天、文本转图像、音频转录、文本转语音和嵌入模型。支持同步和流式API选项,同时也支持访问特定于模型的功能。AI模型API支持的模型类型:聊天模型(ChatModel):处理对话交
- MySQL-SQL优化Explain命令以及参数详解
只吹45°风
MySQLmysqlsql优化explain
前言在MySQL优化的众多手段中,EXPLAIN命令扮演着至关重要的角色。它是数据库管理员和开发者手中的利器,用于分析SQL查询的执行计划。通过执行EXPLAIN,MySQL会提供一份详细的查询执行计划报告,这份报告揭示了查询将如何执行,包括数据访问路径、表的连接顺序、使用的索引、预期扫描的行数等关键信息。这些信息对于识别和解决性能瓶颈至关重要。基于EXPLAIN提供的洞察,我们可以采取措施,如优
- Temu平台遭遇侵权销售同款,卖家如何有效下架对方链接?(平台投诉操作指南)
赛贝维权申诉
笔记
近期,许多卖家向赛贝咨询,在Temu平台上发现有销售同款产品的情况,该如何高效投诉并使侵权链接下架。基于赛贝丰富的成功经验,以下分享详细的投诉流程和方法,帮助大家在Temu平台上有效维护自身合法权益。1.收集证据作为权利持有人或合法授权代表,首要任务是收集并整理充分的证据,以证明商品链接存在侵权行为。具体证据包括:·您认为被侵权的知识产权!的具体识别信息,包括注册号、版权作品的书面描述、版权作品的
- Excel处理控件Aspose.Cells指南:使用 Python 删除 Excel 中的重复行
CodeCraft Studio
文档管理控件pythonexcel开发语言
在Excel中删除重复行对于维护干净、准确和一致的数据集至关重要。它可以确保一致性,并有助于防止分析或报告中出现错误。重复数据会导致错误的分析和糟糕的决策。因此,识别和消除重复数据的能力对于软件开发人员、数据分析师和Excel用户来说是一项宝贵的技能。在本篇博文中,我们将向您展示如何使用Python以编程方式删除Excel工作表中的重复行。Python库用于删除Excel中的重复行Aspose.C
- 模式识别与机器学习课程笔记(1):数学基础
Ro Jace
学习笔记机器学习笔记人工智能
模式识别与机器学习课程笔记(1):数学基础特征矢量和特征空间随机矢量的描述随机矢量的分布函数随机矢量的数字特征随机变量、随机矢量间的统计关系随机矢量的变换正态分布正态分布的定义正态分布随机矢量的性质离散随机矢量及其分布信息论矩阵微分法基本知识矢量或矩阵对于数量变量的微分二、数量函数对于矢量的微分三、矢量函数对于矢量的微分特征矢量和特征空间特征量的类型:物理量、次序量、名义量物理量:直接反映特征的实
- AirPlay认证是什么?AirPlay认证流程有哪些(ai)
Microtest_CS
AirPlay认证
在当今日益数字化的世界中,无线连接技术已成为我们日常生活中不可或缺的一部分。其中,AirPlay作为苹果公司推出的一种无线媒体播放技术,为用户提供了将音频、视频和照片等内容从iOS设备、Mac电脑等发送到AppleTV、HomePod或其他兼容设备的便捷方式。然而,为了确保用户能够获得最佳体验,苹果公司对于支持AirPlay的设备或软件有着严格的认证流程,这就是所谓的AirPlay认证。一、Air
- airplay认证流程有哪些?
Microtest_CS
AirPlay认证
**AirPlay认证流程解析**在当前的数字时代,无线传输技术已成为连接设备、分享内容的标配。AirPlay,作为苹果公司开发的一种专有无线通信技术,允许用户将音频、视频和屏幕镜像从iOS设备、macOS计算机无线传输到支持的接收设备,如扬声器、电视和投影仪等。为了保障用户的使用体验和内容的传输质量,苹果公司设立了AirPlay认证流程,确保接入AirPlay技术的设备符合其标准和要求。**一、
- AirPlay认证是什么?AirPlay认证流程有哪些?
Microtest_CS
cocoamacosobjective-c
AirPlay认证是苹果公司为其无线音频和视频流传输技术所设立的一种认证机制。它确保了使用AirPlay技术的设备能够无缝、高质量地传输音频和视频内容,为用户带来流畅且稳定的多媒体体验。在本文中,我们将详细探讨AirPlay认证是什么,以及AirPlay认证流程包括哪些步骤。一、AirPlay认证概述AirPlay是苹果公司推出的一种无线媒体传输技术,它允许用户将iOS设备、Mac电脑或iTune
- 监控漏检率 30%?陌讯多模态算法实测优化
破解智慧城市视觉算法困境:陌讯多模态融合技术实战解析在智慧城市建设中,视觉算法作为感知层核心技术,正面临着日益严峻的挑战。传统目标检测算法在暴雨、逆光、遮挡等复杂环境下,漏检率常高达25%-40%,直接导致交通违章误判、异常事件漏报等问题。某新一线城市交管部门曾反馈,现有系统对无牌车的识别准确率不足65%,严重影响执法效率[实测数据来源]。这些痛点的核心在于传统单模态算法难以应对城市环境的动态变化
- 从头学前端-HTML简介
liangblog
笔记前端htmljavascript
HTML简介:先说下什么是网页:网页是网站中的页面,通长是HTML格式的文件,单个或多个页面就组成了一个网站;现在的技术发展到一般都是单页应用,在一个页面中,通过页面跳转的方式,访问不同数据页面;网页基本都是通过浏览器访问;网页主要有图片,文字、链接、视音频等元素组成;使用不同的标签引入元素;最终生成的文件和展示的方式一般都是html或htm文件;什么是HTMLHTML是超文本标记语言《Hyper
- 零基础学习性能测试第一章:性能需求分析
试着
性能测试学习数据库服务器性能测试零基础需求分析
目录**核心学习理念****模块1:理解性能需求分析的价值(1小时)****1.1为什么必须做需求分析?****1.2性能需求四要素**(附企业级模板)**模块2:四步挖掘性能需求(实战核心)****步骤1:识别关键业务场景(2小时)****步骤2:量化业务负载(3小时)****步骤3:定义性能指标(2小时)****步骤4:明确环境与数据要求(1小时)****模块3:输出需求文档(企业级模板)**
- 基于深度学习的目标检测:从基础到实践
Blossom.118
机器学习与人工智能深度学习目标检测人工智能音视频语音识别计算机视觉机器学习
前言目标检测(ObjectDetection)是计算机视觉领域中的一个核心任务,其目标是在图像中定位和识别多个对象的类别和位置。近年来,深度学习技术,尤其是卷积神经网络(CNN),在目标检测任务中取得了显著进展。本文将详细介绍如何使用深度学习技术构建目标检测模型,从理论基础到代码实现,带你一步步掌握目标检测的完整流程。一、目标检测的基本概念(一)目标检测的定义目标检测是指在图像中识别和定位多个对象
- 《给孩子最好的礼物》P18~19
七乡杏坛
“父亲是一个银行,发行知识,支付爱。”读到这一句话,我内心非常的感动,文中的父亲本是一所学校的教授。为了给生病的儿子治病,他在工作之余,买起了冰棍,后来他干脆提前离休,在校园里开了一家小卖部。他用自己的辛勤劳作,为身患绝症的儿子累积了一道用生命筑起的防护墙。父亲二字,是多么的朴实,又是多么的伟大。作为家长,要当孩子的成长路上的指南针,舍得付出自己的时间与心思,才会收获一个健康又上进的孩子。看看今晚
- 【AI大模型应用开发】Prompt提示词工程
bay_Tong桐小白
AI大模型人工智能promptai大模型应用开发LLM聊天机器人
halo~我是bay_Tong桐小白本文内容是桐小白个人对所学知识进行的总结和分享,知识点会不定期进行编辑更新和完善,了解最近更新内容可参看更新日志,欢迎各位大神留言、指点感谢新老朋友给予过的关心,过去经历了很多,身心状态慢慢调整,因此更新文章较慢,给关注我的新老朋友道声抱歉,也再次给对桐小白给予关心的新老朋友表示感谢~Prompt提示词工程(初步)【更新日志】大模型分类prompt基本概念pro
- csc(x)积分推导
weixin_43420126
数学基础知识数据挖掘人工智能
在MATLAB中同时绘制sin(x),csc(x)和ln∣tan(x/2)∣的函数图像,需要处理函数的奇点(如csc(x)在sin(x)=0时无定义,ln∣tan(x/2)∣在x=kπ时无定义)(deepseek生成matlab代码)%定义x范围(-2π到2π),高密度采样x=linspace(-2*pi,2*pi,10000);%精确识别csc(x)的奇点(sin(x)=0的点)c
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla