pcl无序点云数据变化检测(octree)并实现可视化

参考:http://www.voidcn.com/article/p-aovciemr-bpr.html

步骤

对无序点云在空间变化上的检测,其实是对前后两幅点云在八叉树结构下的差异检测。因此我们要首先载入一个原始点云,并生成第一个八叉树结构;然后切缓冲,载入第二个点云,生成第二个八叉树结构;最后进行比较,如果有一些叶子结点在第二个八叉树上,但是不在第一个八叉树上,那么就认为这些叶子节点内的点是空间上变化多出来的点。

思路

读取一个点云并复制,在赋值的点云中添加1000个随机点,对两个点云进行0ctree检测,找出新增的点,并将三个点云可视化

代码

#include 
#include 
#include 
#include 
//octree_change_detction
#include 
#include 
#include 
#include 

#include 


int main(int argc, char** argv) {

    srand((unsigned int) time(NULL));//随机种子

    //Octree resolution - side length of octree voxels
    float resolution = 15.0f;
    //实例化基于octree的点云检测类
    pcl::octree::OctreePointCloudChangeDetector octree(resolution);//创建检测类的对象
    //创建两个XYZ点云指针,想办法将文件中的数据赋值给该指针
    pcl::PointCloud::Ptr cloud1 (new pcl::PointCloud);
    pcl::PointCloud::Ptr cloud2 (new pcl::PointCloud);
    //pcl::PointCloud::Ptr cloud3 (new pcl::PointCloud);//用来类型转换的
    pcl::PointCloud::Ptr cloud_result (new pcl::PointCloud);//使用这个指针将获得的索引强制转换并输出

    //加载点云文件给cloud指针
    if(pcl::io::loadPCDFile("room_scan1.pcd",*cloud1)==-1)//??????
    {
        PCL_ERROR("Couldn't read file test_pcd.pcd\n");
        return(-1);
    }

    std::cout<<"loaded room_scan1.pcd  " <size() < handledCloud(*cloud1);//拷贝复制

    //随机增加10000个点云,1024.f * rand() / (RAND_MAX + 1.0f)中的1024控制点云的范围
    for(int i = 0;i < 10000; i++)
    {
        handledCloud.push_back(
                pcl::PointXYZ(50.0f * rand() / (RAND_MAX + 1.0f), 50.0f * rand() / (RAND_MAX + 1.0f), 1.0f * rand() / (RAND_MAX + 1.0f))
                );
    }
    std::cout<<"handledCloud points loaded  "<("room_scan2.pcd",*cloud2);
    //std::cout<<"loaded maize1"< newPointIdxVector;//存储新加点的索引的向量

    //Get vector of point indices from octree voxels which did not exist in previous buffer
    octree.getPointIndicesFromNewVoxels(newPointIdxVector);//获取新增点的索引


    //将新增点的放到cloud_result所指向的内存中
    cloud_result->width = 50000;
    cloud_result->height = 1;
    cloud_result->is_dense = false;
    cloud_result->points.resize(cloud_result->width * cloud_result->height);
    for(size_t i = 0;i < newPointIdxVector.size();++i)
    {
        cloud_result->points[i].x = handledCloud.points[newPointIdxVector[i]].x;
        cloud_result->points[i].y = handledCloud.points[newPointIdxVector[i]].y;
        cloud_result->points[i].z = handledCloud.points[newPointIdxVector[i]].z;
    }



 //保存文件
    pcl::io::savePCDFileASCII("result.pcd",*cloud_result);//将计算结果存放到result.pcd
    std::cout<<"result.pcd saved "<< cloud_result->size()<< "points"<initCameraParameters();//初始化相机参数

    int v1(0);//第二个窗口的参数
    viewer->createViewPort(0.0,0.0,0.33,1,v1); //设置第一个窗口的大小,位于屏幕左侧
    viewer->setBackgroundColor(255,0,255,v1);//background of first port
    viewer->addText("cloud1",10,10,"cloud1",v1);//好像是一个便签
    pcl::visualization::PointCloudColorHandlerCustom single_color1(cloud1,0,255,0);//设置第一个点云的颜色
    viewer->addPointCloud(cloud1,single_color1,"simple_cloud1",v1);//显示第一个点云


    int v2(0);//第一个窗口的参数
    viewer->createViewPort(0.33,0,0.66,1,v2);//设置第二个窗口的大小,位于屏幕右侧
    viewer->setBackgroundColor(0,255,255,v2);//background of second port
    viewer->addText("handledCloud",10,9,"handledCloud",v2);//输出一行文字
    pcl::visualization::PointCloudColorHandlerCustom single_color2(handledCloud.makeShared(),255,1,1);//设置第二个点云的颜色
    viewer->addPointCloud(handledCloud.makeShared(),single_color2,"simple_cloud2",v2);//显示第二个点云

    //第三个点云窗口
    int v3(0);//第三个窗口的参数
    viewer->createViewPort(0.66,0,1,1,v3);//窗口大小
    viewer->setBackgroundColor(0,0,0,v3);//背景颜色
    viewer->addText("cloud_result",10,8,"cloud_result",v3);//好像是一个便签
    pcl::visualization::PointCloudColorHandlerCustom single_color3(cloud_result,255,255,255);//点云颜色
    viewer->addPointCloud(cloud_result,single_color3,"simple_cloud3",v3);//显示点云


    //viewer->createViewPort();
    viewer->addCoordinateSystem(2);//添加坐标系

   // while(!viewer->wasStopped())
   // viewer->spinOnce(100);
    viewer->spin();

    return 0;
}

CMakeLists.txt

cmake_minimum_required(VERSION 2.6 FATAL_ERROR)
project(poind_cloud_change_detected)

find_package(PCL 1.2 REQUIRED)

include_directories(${PCL_INCLUDE_DIRS})
link_directories(${PCL_LIBRARY_DIRS})
add_definitions(${PCL_DEFINITIONS})
set(CMAKE_CXX_STANDARD 11)

add_executable(${PROJECT_NAME} main.cpp)
target_link_libraries(${PROJECT_NAME} ${PCL_LIBRARIES})

结果 

pcl无序点云数据变化检测(octree)并实现可视化_第1张图片

 遇到的问题

1、不能检测到新增点,最后输出点的时候显示没有新增点0个

解决:随机点赋值的时候没有加上"f"(原本为64.0f,写成了64)

2、读取pcd文件失败

解决:文件中的点的SIZE和实际的点的数目不匹配

3、随机点赋值的时候64.0f 代表长宽高,如果随机点的体积过小(在原点云内部)是检测不出来的

4、新增点是通过push_back()函数添加的。

    // 改造原始点云
    pcl::PointCloud handledCloud(sourceCloud);       // 拷贝复制
    // 随机增加100个点
    for (int i = 0; i < 100000; i++)
    {
        handledCloud.push_back(
            pcl::PointXYZ(1.0f*rand() / (RAND_MAX + 1.0f), 
            10.0f*rand() / (RAND_MAX + 1.0f), 
            10.0f*rand() / (RAND_MAX + 1.0f)));
    }

5、最后输出检测到的点是通过强制类型转换为points类型再输出的

    //不转换直接输出2
    std::cout << "Output from getPointIndicesFromNewVoxels:" << std::endl;
    std::cout << newPointIdxVector.size () <<" points changed "<

 

你可能感兴趣的:(C/C++,PointCloud)