- 验证resneXt,densenet,mobilenet和SENet的特色结构
dfj77477
人工智能python
简介图像分类对网络结构的要求,一个是精度,另一个是速度。这两个需求推动了网络结构的发展。resneXt:分组卷积,降低了网络参数个数。densenet:密集的跳连接。mobilenet:标准卷积分解成深度卷积和逐点卷积,即深度分离卷积。SENet:注意力机制。简单起见,使用了[1]的代码,注释掉layer4,作为基本框架resnet14。然后改变局部结构,验证分类效果。实验结果GPU:gtx107
- 深度学习与遗传算法的碰撞——利用遗传算法优化深度学习网络结构(详解与实现)
2401_84003733
程序员深度学习人工智能
self.model.add(layers.Dense(10,activation=‘relu’))self.model.build(input_shape=(4,28*28))self.model.summary()self.model.compile(optimizer=optimizers.Adam(lr=0.01),loss=losses.CategoricalCrossentropy(f
- Tensorflow中Keras搭建神经网络六步法及参数详解 -- Tensorflow自学笔记12
青瓷看世界
tensorflow笔记人工智能深度学习神经网络
一.tf.keras搭建神经网络六步法1.import相关模块如importtensorflowastf。2.指定输入网络的训练集和测试集如指定训练集的输入x_train和标签y_train,测试集的输入x_test和标签y_test。3.逐层搭建网络结构model=tf.keras.models.Sequential()。4.在model.compile()中配置训练方法选择训练时使用的优化器、
- 防火墙部署基本方法
坚持可信
信息安全php开发语言
防火墙部署基本方法防火墙部署是确保网络安全的重要步骤,通过合理的部署和配置防火墙,可以有效地保护网络资源,防止未经授权的访问和网络攻击。以下是防火墙部署的基本方法,包括部署步骤、配置建议和常见的部署拓扑。一、部署步骤1.需求分析步骤:评估网络结构:了解当前网络拓扑结构、流量模式和主要的网络设备。明确安全需求:确定需要保护的资源、潜在威胁以及安全目标。选择防火墙类型:根据需求选择合适的防火墙类型(硬
- YOLOv8改进 更换轻量级网络结构
学yolo的小白
UpgradeYOLOv8进阶YOLO目标检测深度学习
一、GhostNet论文论文地址:1911.11907.pdf(arxiv.org)二、GhostNet结构GhostNet是一种高效的目标检测网络,具有较低的计算复杂度和较高的准确性。该网络采用了轻量级的架构,可以在计算资源有限的设备上运行,并能够快速地实时检测图像中的目标物体。GhostNet基于MobileNetV3的设计思路,采用了Ghost模块来减少网络参数数量,从而减少计算量并提高模型
- 测试环境搭建
框架里的巧克力
测试工具集成测试
一、什么是测试环境测试环境,指为了完成软件测试工作所必需的计算机硬件、软件、网络设备、历史数据的总称,简而言之,测试环境=硬件+软件+网络+数据准备+测试工具。硬件:指测试必需的服务器、客户端、网络连接等辅助设备。软件:指测试软件运行时的操作系统、数据库及其他应用软件。网络:指被测软件运行时的网络系统、网络结构以及其他网络设备构成的环境等。数据准备:一般指测试数据的准备。测试数据会在测试用例设计的
- KAN网络技术最全解析——最热KAN能否干掉MLP和Transformer?(收录于GPT-4/ChatGPT技术与产业分析)
u013250861
#LLM/Transformertransformerchatgpt深度学习
KAN网络结构思路来自Kolmogorov-Arnold表示定理。MLP在节点(“神经元”)上具有固定的激活函数,而KAN在边(“权重”)上具有可学习的激活函数。在数据拟合和PDE求解中,较小的KAN可以比较大的MLP获得更好的准确性。相对MLP,KAN也具备更好的可解释性,适合作为数学和物理研究中的辅助模型,帮助发现和寻找更基础的数值规律。(点赞是我们分享的动力)MLP与KAN对比与传统的MLP
- 华为云服务-运维篇-负载均衡介绍与平台算法使用_华为负载均衡设备(1)
一个射手座的程序媛
程序员运维华为云负载均衡
本地负载均衡不需要花费高额成本购置高性能服务器,只需利用现有设备资源,就可有效避免服务器单点故障造成数据流量的损失,通常用来解决数据流量过大、网络负荷过重的问题。同时它拥有形式多样的均衡策略把数据流量合理均衡的分配到各台服务器。如果需要在现在服务器上升级扩充,不需改变现有网络结构、停止现有服务,仅需要在服务群中简单地添加一台新服务器。2.4、全局负载均衡2.4.1、简介全局负载均衡针对不同地理位置
- 问题
三点水_787a
卷积层和池化层都能反向传播DenseNet→修改了网络结构U-Net→修改了激活函数,拼接catResNet→相加add
- caffe/PyTorch/TensorFlow 在Jupyter Notebook GPU中运用
俊俏的萌妹纸
caffe人工智能深度学习
在JupyterNotebook中使用Caffe框架并利用GPU加速,可以实现多种效果和目的,主要集中在深度学习领域。以下是一些主要的应用场景:快速训练模型:GPU加速可以显著提高模型训练的速度。对于大型数据集和复杂的神经网络结构,使用GPU可以大大减少训练时间。实时数据增强:在训练过程中,可以实时地对输入数据进行变换和增强,以提高模型的泛化能力。GPU加速使得这些操作更加高效。大规模数据处理:深
- 算法学习-2024.8.16
蓝纹绿茶
学习
一、Tensorrt学习补充TensorRT支持INT8和FP16的计算。深度学习网络在训练时,通常使用32位或16位数据。TensorRT则在网络的推理时选用不这么高的精度,达到加速推断的目的。TensorRT对于网络结构进行了重构,把一些能够合并的运算合并在了一起,针对GPU的特性做了优化。一个深度学习模型,在没有优化的情况下,比如一个卷积层、一个偏置层和一个reload层,这三层是需要调用三
- 经验笔记:拓扑学在计算机科学中的应用及原理
漆黑的莫莫
随手笔记笔记拓扑学
拓扑学在计算机科学中的应用及原理笔记引言拓扑学是数学的一个分支,专注于空间中的点的关系以及在连续变换下不变的性质。它提供了一种强大的框架,用于分析和理解数据集的结构。在计算机科学中,拓扑学的应用非常广泛,涵盖了从网络设计到数据结构优化,再到高级数据分析等多个方面。1.计算机网络设计应用:拓扑学在计算机网络设计中的应用主要体现在网络结构的选择上。网络拓扑决定了节点之间的连接方式,影响网络的性能、可扩
- 简单易上手的生成对抗网络
茶冻茶茶
生成对抗网络人工智能神经网络
模型原理生成对抗网络是指一类采用对抗训练方式进行学习的深度生成模型,包含的判别网络和生成网络都可以根据不同的生成任务使用不同的网络结构。生成器:通过机器生成数据,最终目的是骗过判别器。判别器:判断这张图像是真实的还是机器生成的,目的是找出生成器做的假数据。构建GAN模型的基本逻辑:现实问题需求→建立实现功能的GAN框架(编程)→训练GAN(生成网络、对抗网络)→成熟的GAN模型→应用。GAN训练过
- nacos 负载策略_Springcloud + nacos + gateway 负载均衡(ribbon)
蔡绿小姐
nacos负载策略
whatisrobbon?Ribbon是客户端负载均衡工具,它基于NetflixRibbon实现。通过SpringCloud的封装,可以让我们轻松地将面向服务的REST模版请求自动转换成客户端负载均衡的服务调用什么叫负载均衡负载均衡,英文名称为LoadBalance,其含义就是指将负载(工作任务)进行平衡、分摊到多个操作单元上进行运行,从而协同完成工作任务。负载均衡构建在原有网络结构之上,它提供了
- YOLOv8中的C2f模块代码详解
王了了哇
YOLO计算机视觉
C2f模块代码详解1.C2f模块组成2.C2f模块作用3.具体流程4.代码实现5.关键组件和参数说明6.运行流程7.输入输出示例 在YOLOv8网络结构中,C2F模块(CSPBottleneckwith2Convolutions)是一个关键组件,用于实现跨阶段部分聚合(CrossStagePartialFusion)。 YOLOv8整体网络结构图: 其中C2f的模块结构如下图所示: Bot
- CNN网络简介
吕不韦
卷积神经网络简介(ConvolutionalNeuralNetworks,简称CNN)卷积神经网络是近年发展起来,并引起广泛重视的一种高效识别方法。20世纪60年代,Hubel和Wiesel在研究猫脑皮层中用于局部敏感和方向选择的神经元时发现其独特的网络结构可以有效地降低反馈神经网络的复杂性,继而提出了卷积神经网络(ConvolutionalNeuralNetworks-简称CNN)。现在,CNN
- yolov7的参数量、计算量、 parameters、 parameters网络结构怎么查看
qhchao
YOLO
一、首先找到YOLOv7的models文件夹,找到yolo脚本,点击它。2.将yolo脚本点开后,拉倒最下面。将cfg后面的·参数更改一下,运行yolo.py脚本,就可以看到参数量和计算量等参数啦
- 基于yolov8的脑肿瘤检测系统python源码+onnx模型+评估指标曲线+精美GUI界面
FL1623863129
深度学习YOLO人工智能
【算法介绍】基于YOLOv8的脑肿瘤检测系统是一项前沿的医疗应用,该系统利用YOLOv8这一高效的目标检测算法,实现对脑肿瘤病灶的快速、准确识别。YOLOv8作为YOLO系列的最新版本,不仅继承了前代版本在速度和精度上的优势,还通过改进的网络结构和优化策略,进一步提升了模型性能。在脑肿瘤检测中,YOLOv8通过深度学习技术,自动从脑部图像中提取特征,并学习目标的特征表示和位置信息。系统采用模块化设
- YOLOV5训练时P、R、mAP等值均为0的问题
该醒醒了~
pythonC#C++各种报错问题深度学习人工智能计算机视觉
当YOLOv5的训练P、R、mAP等指标为0时,通常有以下一些原因:数据集质量不佳:检查数据集中是否存在较大的类别不平衡或者太多的噪声。可能需要重新清理数据集以确保标签正确且具有可解释性。学习率过高或过低:首先尝试将学习率降低到一个更合适的水平,并考虑使用学习率调度程序来优化训练过程。模型过于简单:如果模型过于简单,则很难从样本中学习到有效的特征。考虑增加网络的深度和宽度,或使用更复杂的网络结构。
- 20.神经网络 - 搭建小实战和 Sequential 的使用
椰皮糖
深度学习神经网络人工智能深度学习
神经网络-搭建小实战和Sequential的使用在PyTorch中,Sequential是一个容器(container)类,用于构建神经网络模型。它允许你按顺序(sequential)添加不同的网络层,并将它们串联在一起,形成一个网络模型。这样做可以方便地定义简单的前向传播过程,适用于许多基本的网络结构。Sequential的优点之一是其简洁性和易读性,特别适用于简单的网络结构。然而,对于更复杂的
- 第七届MathorCup高校数学建模挑战赛-A题:基于改进的神经网络和混沌时间序列预测控制高炉炼铁过程
格图素书
大数据竞赛赛题解析数学建模神经网络人工智能
目录摘要一.问题重述二.模型假设三.符号说明四.问题分析五.数据预处理5.1异常值剔除5.2归一化处理5.3预处理后的数据六.问题一模型的建立与求解6.1BP神经网络预测模型6.1.1输入层和输出层6.1.2训练集和验证集6.1.3三层BP神经网络结构6.1.4BP神经网络的参数6.1.6相关性分析6.2小波神经网络预测模型6.2.1小波神经网络的结构6.2.2小波神经网络的基函数6.2.3小波神
- 区块链革命:探索Web3如何重塑数字世界
dingzd95
区块链web3
随着区块链技术的不断发展和应用,Web3作为其重要的应用范式,正以其去中心化、安全和可编程性质,深刻影响和重塑着我们的数字世界。本文将深入探讨Web3的核心概念、关键特征以及其在重塑数字世界中的应用和影响,为读者揭示区块链革命的全貌和潜力。Web3技术的核心概念和特征1.去中心化的网络结构Web3建立在去中心化的网络结构之上,与传统的中心化网络模式形成鲜明对比。去中心化网络通过分布式节点存储和处理
- 【matlab】分类回归——智能优化算法优化径向基神经网络
passion更好
机器学习智能优化算法算法matlab分类
目录径向基(RadialBasisFunction,RBF)神经网络一、基本概念二、网络结构三、工作原理四、学习算法五、优点与应用六、与BP神经网络的比较智能优化算法常见的智能优化算法灰狼优化算法(GreyWolfOptimizer,GWO)一、算法原理二、算法流程三、算法特点四、应用场景代码实现定义目标函数主函数径向基(RadialBasisFunction,RBF)神经网络一、基本概念径向基函
- 《探秘神经网络:人工智能的强大引擎》
程序猿阿伟
人工智能神经网络深度学习
在当今科技飞速发展的时代,人工智能已经成为了热门话题,而神经网络作为人工智能的重要组成部分,正发挥着越来越关键的作用。那么,什么是神经网络呢?它在人工智能中又有哪些令人瞩目的应用呢?一、什么是神经网络神经网络,也被称为人工神经网络,是一种模仿生物神经网络结构和功能的计算模型。生物神经网络是由大量的神经元相互连接而成,通过电信号和化学信号进行信息传递和处理。人工神经网络则是由许多简单的处理单元(称为
- 【深度学习】吴恩达-课后作业-搭建多层神经网络以及应用
—Xi—
深度学习深度学习机器学习人工智能python神经网络
Ng的深度学习,其实前几个月就听完了,课后作业也是大懂不懂的都做了一遍,代码也跟着各种各样的参考敲了一遍,但暑假几个月没怎么学习。。。基本也忘得差不多了,这几周回顾了一下深度学习这门课的笔记,看了别的博主的总结,对CNN,RNN,LSTM,注意力机制等网络结构进行了复盘,虽然感觉自己很心浮气躁,一边也在学集成学习那几个算法和推荐系统相关,这里也告诉自己:贪多嚼不烂,心急吃不了热豆腐,慢慢来,还是要
- 深度学习与(复杂系统)事物的属性
科学禅道
深度学习模型专栏深度学习人工智能
深度学习与复杂系统中事物属性的关系体现在:特征学习与表示:深度学习通过多层神经网络结构,能够自动从原始输入数据中学习和提取出丰富的特征表示。每一层神经网络都可能对应着事物属性的不同抽象层次,底层可能对应简单直观的属性,而随着网络深度的增加,顶层可以学习到更抽象、复杂的属性及其相互关系。非线性关系建模:深度学习特别擅长处理非线性关系,而在复杂系统中,事物属性间的相互作用往往表现为非线性,例如,某些属
- 深度学习——梯度消失、梯度爆炸
小羊头发长
深度学习机器学习人工智能
本文参考:深度学习之3——梯度爆炸与梯度消失梯度消失和梯度爆炸的根源:深度神经网络结构、反向传播算法目前优化神经网络的方法都是基于反向传播的思想,即根据损失函数计算的误差通过反向传播的方式,指导深度网络权值的更新。为什么神经网络优化用到梯度下降的优化方法?深度网络是由许多非线性层(带有激活函数)堆叠而成,每一层非线性层可以视为一个非线性函数f(x),因此整个深度网络可以视为一个复合的非线性多元函数
- ENAS:首个权值共享的神经网络搜索方法,千倍加速 | ICML 2018
VincentTeddy
NAS是自动设计网络结构的重要方法,但需要耗费巨大的资源,导致不能广泛地应用,而论文提出的EfficientNeuralArchitectureSearch(ENAS),在搜索时对子网的参数进行共享,相对于NAS有超过1000x倍加速,单卡搜索不到半天,而且性能并没有降低,十分值得参考 来源:【晓飞的算法工程笔记】公众号论文:EfficientNeuralArchitectureSearchvia
- 神经网络入门经典书籍,神经网络理论及应用
小浣熊的技术
神经网络人工智能深度学习算法
想要学习人工神经网络,需要什么样的基础知识?人工神经网络理论百度网盘下载:链接:提取码:rxlc简介:本书是人工神经网络理论的入门书籍。全书共分十章。第一章主要阐述人工神经网络理论的产生及发展历史、理论特点和研究方向;第二章至第九章介绍人工神经网络理论中比较成熟且常用的几种主要网络结构、算法和应用途径;第十章用较多篇幅介绍了人工神经网络理论在各个领域的应用实例。谷歌人工智能写作项目:神经网络伪原创
- 神经网络算法浅谈
dami_king
神经网络算法深度学习人工智能AIGC
神经网络是一种模拟人脑神经元工作原理的计算模型,由大量的人工神经元相互连接形成复杂网络结构,用于解决各种机器学习和人工智能问题。以下是对神经网络算法的浅析:一、网络结构神经网络的核心在于其层次结构,其中包括:输入层(InputLayer):接收原始特征数据。隐藏层(HiddenLayers):包含若干层,每层包含多个神经元,每个神经元接收到上一层的输出作为输入,并通过加权和与非线性变换(激活函数)
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIPHPandroidlinux
╔-----------------------------------╗┆
- 各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
bozch
.net.net mvc
在.net mvc5中,在执行某一操作的时候,出现了如下错误:
各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
经查询当前的操作与错误内容无关,经过对错误信息的排查发现,事故出现在数据库迁移上。
回想过去: 在迁移之前已经对数据库进行了添加字段操作,再次进行迁移插入XXX字段的时候,就会提示如上错误。
&
- Java 对象大小的计算
e200702084
java
Java对象的大小
如何计算一个对象的大小呢?
 
- Mybatis Spring
171815164
mybatis
ApplicationContext ac = new ClassPathXmlApplicationContext("applicationContext.xml");
CustomerService userService = (CustomerService) ac.getBean("customerService");
Customer cust
- JVM 不稳定参数
g21121
jvm
-XX 参数被称为不稳定参数,之所以这么叫是因为此类参数的设置很容易引起JVM 性能上的差异,使JVM 存在极大的不稳定性。当然这是在非合理设置的前提下,如果此类参数设置合理讲大大提高JVM 的性能及稳定性。 可以说“不稳定参数”
- 用户自动登录网站
永夜-极光
用户
1.目标:实现用户登录后,再次登录就自动登录,无需用户名和密码
2.思路:将用户的信息保存为cookie
每次用户访问网站,通过filter拦截所有请求,在filter中读取所有的cookie,如果找到了保存登录信息的cookie,那么在cookie中读取登录信息,然后直接
- centos7 安装后失去win7的引导记录
程序员是怎么炼成的
操作系统
1.使用root身份(必须)打开 /boot/grub2/grub.cfg 2.找到 ### BEGIN /etc/grub.d/30_os-prober ### 在后面添加 menuentry "Windows 7 (loader) (on /dev/sda1)" { 
- Oracle 10g 官方中文安装帮助文档以及Oracle官方中文教程文档下载
aijuans
oracle
Oracle 10g 官方中文安装帮助文档下载:http://download.csdn.net/tag/Oracle%E4%B8%AD%E6%96%87API%EF%BC%8COracle%E4%B8%AD%E6%96%87%E6%96%87%E6%A1%A3%EF%BC%8Coracle%E5%AD%A6%E4%B9%A0%E6%96%87%E6%A1%A3 Oracle 10g 官方中文教程
- JavaEE开源快速开发平台G4Studio_V3.2发布了
無為子
AOPoraclemysqljavaeeG4Studio
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V3.2版本已经正式发布。大家可以通过如下地址下载。
访问G4Studio网站
http://www.g4it.org
G4Studio_V3.2版本变更日志
功能新增
(1).新增了系统右下角滑出提示窗口功能。
(2).新增了文件资源的Zip压缩和解压缩
- Oracle常用的单行函数应用技巧总结
百合不是茶
日期函数转换函数(核心)数字函数通用函数(核心)字符函数
单行函数; 字符函数,数字函数,日期函数,转换函数(核心),通用函数(核心)
一:字符函数:
.UPPER(字符串) 将字符串转为大写
.LOWER (字符串) 将字符串转为小写
.INITCAP(字符串) 将首字母大写
.LENGTH (字符串) 字符串的长度
.REPLACE(字符串,'A','_') 将字符串字符A转换成_
- Mockito异常测试实例
bijian1013
java单元测试mockito
Mockito异常测试实例:
package com.bijian.study;
import static org.mockito.Mockito.mock;
import static org.mockito.Mockito.when;
import org.junit.Assert;
import org.junit.Test;
import org.mockito.
- GA与量子恒道统计
Bill_chen
JavaScript浏览器百度Google防火墙
前一阵子,统计**网址时,Google Analytics(GA) 和量子恒道统计(也称量子统计),数据有较大的偏差,仔细找相关资料研究了下,总结如下:
为何GA和量子网站统计(量子统计前身为雅虎统计)结果不同?
首先:没有一种网站统计工具能保证百分之百的准确出现该问题可能有以下几个原因:(1)不同的统计分析系统的算法机制不同;(2)统计代码放置的位置和前后
- 【Linux命令三】Top命令
bit1129
linux命令
Linux的Top命令类似于Windows的任务管理器,可以查看当前系统的运行情况,包括CPU、内存的使用情况等。如下是一个Top命令的执行结果:
top - 21:22:04 up 1 day, 23:49, 1 user, load average: 1.10, 1.66, 1.99
Tasks: 202 total, 4 running, 198 sl
- spring四种依赖注入方式
白糖_
spring
平常的java开发中,程序员在某个类中需要依赖其它类的方法,则通常是new一个依赖类再调用类实例的方法,这种开发存在的问题是new的类实例不好统一管理,spring提出了依赖注入的思想,即依赖类不由程序员实例化,而是通过spring容器帮我们new指定实例并且将实例注入到需要该对象的类中。依赖注入的另一种说法是“控制反转”,通俗的理解是:平常我们new一个实例,这个实例的控制权是我
- angular.injector
boyitech
AngularJSAngularJS API
angular.injector
描述: 创建一个injector对象, 调用injector对象的方法可以获得angular的service, 或者用来做依赖注入. 使用方法: angular.injector(modules, [strictDi]) 参数详解: Param Type Details mod
- java-同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待
bylijinnan
Integer
public class PC {
/**
* 题目:生产者-消费者。
* 同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待。
*/
private static final Integer[] val=new Integer[10];
private static
- 使用Struts2.2.1配置
Chen.H
apachespringWebxmlstruts
Struts2.2.1 需要如下 jar包: commons-fileupload-1.2.1.jar commons-io-1.3.2.jar commons-logging-1.0.4.jar freemarker-2.3.16.jar javassist-3.7.ga.jar ognl-3.0.jar spring.jar
struts2-core-2.2.1.jar struts2-sp
- [职业与教育]青春之歌
comsci
教育
每个人都有自己的青春之歌............但是我要说的却不是青春...
大家如果在自己的职业生涯没有给自己以后创业留一点点机会,仅仅凭学历和人脉关系,是难以在竞争激烈的市场中生存下去的....
&nbs
- oracle连接(join)中使用using关键字
daizj
JOINoraclesqlusing
在oracle连接(join)中使用using关键字
34. View the Exhibit and examine the structure of the ORDERS and ORDER_ITEMS tables.
Evaluate the following SQL statement:
SELECT oi.order_id, product_id, order_date
FRO
- NIO示例
daysinsun
nio
NIO服务端代码:
public class NIOServer {
private Selector selector;
public void startServer(int port) throws IOException {
ServerSocketChannel serverChannel = ServerSocketChannel.open(
- C语言学习homework1
dcj3sjt126com
chomework
0、 课堂练习做完
1、使用sizeof计算出你所知道的所有的类型占用的空间。
int x;
sizeof(x);
sizeof(int);
# include <stdio.h>
int main(void)
{
int x1;
char x2;
double x3;
float x4;
printf(&quo
- select in order by , mysql排序
dcj3sjt126com
mysql
If i select like this:
SELECT id FROM users WHERE id IN(3,4,8,1);
This by default will select users in this order
1,3,4,8,
I would like to select them in the same order that i put IN() values so:
- 页面校验-新建项目
fanxiaolong
页面校验
$(document).ready(
function() {
var flag = true;
$('#changeform').submit(function() {
var projectScValNull = true;
var s ="";
var parent_id = $("#parent_id").v
- Ehcache(02)——ehcache.xml简介
234390216
ehcacheehcache.xml简介
ehcache.xml简介
ehcache.xml文件是用来定义Ehcache的配置信息的,更准确的来说它是定义CacheManager的配置信息的。根据之前我们在《Ehcache简介》一文中对CacheManager的介绍我们知道一切Ehcache的应用都是从CacheManager开始的。在不指定配置信
- junit 4.11中三个新功能
jackyrong
java
junit 4.11中两个新增的功能,首先是注解中可以参数化,比如
import static org.junit.Assert.assertEquals;
import java.util.Arrays;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.junit.runn
- 国外程序员爱用苹果Mac电脑的10大理由
php教程分享
windowsPHPunixMicrosoftperl
Mac 在国外很受欢迎,尤其是在 设计/web开发/IT 人员圈子里。普通用户喜欢 Mac 可以理解,毕竟 Mac 设计美观,简单好用,没有病毒。那么为什么专业人士也对 Mac 情有独钟呢?从个人使用经验来看我想有下面几个原因:
1、Mac OS X 是基于 Unix 的
这一点太重要了,尤其是对开发人员,至少对于我来说很重要,这意味着Unix 下一堆好用的工具都可以随手捡到。如果你是个 wi
- 位运算、异或的实际应用
wenjinglian
位运算
一. 位操作基础,用一张表描述位操作符的应用规则并详细解释。
二. 常用位操作小技巧,有判断奇偶、交换两数、变换符号、求绝对值。
三. 位操作与空间压缩,针对筛素数进行空间压缩。
&n
- weblogic部署项目出现的一些问题(持续补充中……)
Everyday都不同
weblogic部署失败
好吧,weblogic的问题确实……
问题一:
org.springframework.beans.factory.BeanDefinitionStoreException: Failed to read candidate component class: URL [zip:E:/weblogic/user_projects/domains/base_domain/serve
- tomcat7性能调优(01)
toknowme
tomcat7
Tomcat优化: 1、最大连接数最大线程等设置
<Connector port="8082" protocol="HTTP/1.1"
useBodyEncodingForURI="t
- PO VO DAO DTO BO TO概念与区别
xp9802
javaDAO设计模式bean领域模型
O/R Mapping 是 Object Relational Mapping(对象关系映射)的缩写。通俗点讲,就是将对象与关系数据库绑定,用对象来表示关系数据。在O/R Mapping的世界里,有两个基本的也是重要的东东需要了解,即VO,PO。
它们的关系应该是相互独立的,一个VO可以只是PO的部分,也可以是多个PO构成,同样也可以等同于一个PO(指的是他们的属性)。这样,PO独立出来,数据持