优化器optimizer加速神经网络的训练
SGD方法(Stochestic Gradient Descent)(随机梯度下降)每次使用批量数据训练,虽然不能反映整体情况,但是加速了训练速度,也不会丢失很多的准确度。
其他方法参考:Optimizer
import numpy as np
import torch
import torch.utils.data as Data
import torch.nn.functional as F
import matplotlib.pyplot as plt
from torch.autograd import Variable
#给一些超参数
LR = 0.01
BATCH_SIZE = 32
EPOCH = 12
x = torch.unsqueeze(torch.linspace(-1,1,1000),dim = 1)
y = x.pow(2) + 0.1*torch.normal(torch.zeros(*x.size()))
#plot dataset
plt.scatter(x.numpy(),y.numpy())
plt.show()
import numpy as np
import torch
import torch.utils.data as Data
import torch.nn.functional as F
import matplotlib.pyplot as plt
from torch.autograd import Variable
#给一些超参数
LR = 0.01
BATCH_SIZE = 32
EPOCH = 12
x = torch.unsqueeze(torch.linspace(-1,1,1000),dim = 1)
y = x.pow(2) + 0.1*torch.normal(torch.zeros(*x.size()))
##plot dataset
#plt.scatter(x.numpy(),y.numpy())
#plt.show()
torch_dataset = Data.TensorDataset(x,y)
loader = Data.DataLoader(dataset = torch_dataset,batch_size = BATCH_SIZE,shuffle = True)
#构建神经网络
class Net(torch.nn.Module): #从Module模块继承
#定义阶段
def __init__(self,n_feature,n_hidden,n_output):
super(Net,self).__init__() #继承Net到模块
self.hidden = torch.nn.Linear(n_feature,n_hidden)#隐藏层
self.predict = torch.nn.Linear(n_hidden,n_output)#输出层
#搭建神经网络过程
def forward(self,x):#神经网络前向传递的过程
x = F.relu(self.hidden(x))
x = self.predict(x) #在输出的时候不用激励函数,因为用激励还输会截断一部分值的数据
return x
#用四个不同的优化器优化神经网络
net_SGD = Net(1,20,1)
net_Momentum = Net(1,20,1)
net_RMSprop = Net(1,20,1)
net_Adam = Net(1,20,1)
nets = [net_SGD,net_Momentum,net_RMSprop,net_Adam]
opt_SGD = torch.optim.SGD(net_SGD.parameters(),lr = LR)
opt_Momentum = torch.optim.SGD(net_Momentum.parameters(),lr = LR,momentum = 0.8)
opt_RMSprop = torch.optim.RMSprop(net_RMSprop.parameters(), lr=LR, alpha=0.9)
opt_Adam = torch.optim.Adam(net_Adam.parameters(), lr=LR, betas=(0.9, 0.99))
optimizers = [opt_SGD, opt_Momentum, opt_RMSprop, opt_Adam]
loss_func = torch.nn.MSELoss()
losses_his = [[],[],[],[]] #记录每个优化器的误差变化
for epoch in range(EPOCH):
print('Epoch: ', epoch)
for step, (batch_x, batch_y) in enumerate(loader):
b_x = Variable(batch_x) #这里的batch_x都是tensor的形式,要Variable一下才能变成Variable
b_y = Variable(batch_y)
# 对每个优化器, 优化属于他的神经网络
for net, opt, l_his in zip(nets, optimizers, losses_his):
output = net(b_x) # get output for every net
loss = loss_func(output, b_y) # compute loss for every net
opt.zero_grad() # clear gradients for next train
loss.backward() # backpropagation, compute gradients
opt.step() # apply gradients
l_his.append(loss.data.numpy()) # loss recoder
labels = ['SGD','Momentum','RMSprop','Adam']
for i,l_his in enumerate(losses_his):
plt.plot(l_his,label = labels[i])
plt.legend(loc = 'best')
plt.xlabel('Steps')
plt.ylabel('Loss')
plt.ylim((0,0.2))
plt.show()