PAT甲级真题 1018 Public Bike Management (30分) C++实现(基于Dijkstra算法暴力存储所有最短路径;测试点5、7大坑)

题目

There is a public bike service in Hangzhou City which provides great convenience to the tourists from all over the world. One may rent a bike at any station and return it to any other stations in the city.
The Public Bike Management Center (PBMC) keeps monitoring the real-time capacity of all the stations. A station is said to be in perfect condition if it is exactly half-full. If a station is full or empty, PBMC will collect or send bikes to adjust the condition of that station to perfect. And more, all the stations on the way will be adjusted as well.
When a problem station is reported, PBMC will always choose the shortest path to reach that station. If there are more than one shortest path, the one that requires the least number of bikes sent from PBMC will be chosen.
PAT甲级真题 1018 Public Bike Management (30分) C++实现(基于Dijkstra算法暴力存储所有最短路径;测试点5、7大坑)_第1张图片
Figure 1 illustrates an example. The stations are represented by vertices and the roads correspond to the edges. The number on an edge is the time taken to reach one end station from another. The number written inside a vertex S is the current number of bikes stored at S. Given that the maximum capacity of each station is 10. To solve the problem at S3, we have 2 different shortest paths:
1.PBMC -> S1 -> S3. In this case, 4 bikes must be sent from PBMC, because we can collect 1 bike from S1 and then take 5 bikes to S3, so that both stations will be in perfect conditions.
2.PBMC -> S2 -> S3. This path requires the same time as path 1, but only 3 bikes sent from PBMC and hence is the one that will be chosen.
Input Specification:
Each input file contains one test case. For each case, the first line contains 4 numbers: Cmax (<= 100), always an even number, is the maximum capacity of each station; N (<= 500), the total number of stations; Sp, the index of the problem station (the stations are numbered from 1 to N, and PBMC is represented by the vertex 0); and M, the number of roads. The second line contains N non-negative numbers Ci (i=1,…N) where each Ci is the current number of bikes at Si respectively. Then M lines follow, each contains 3 numbers: Si, Sj, and Tij which describe the time Tij taken to move betwen stations Si and Sj. All the numbers in a line are separated by a space.
Output Specification:
For each test case, print your results in one line. First output the number of bikes that PBMC must send. Then after one space, output the path in the format: 0->S1->…->Sp. Finally after another space, output the number of bikes that we must take back to PBMC after the condition of Sp is adjusted to perfect.
Note that if such a path is not unique, output the one that requires minimum number of bikes that we must take back to PBMC. The judge’s data guarantee that such a path is unique.
Sample Input:
10 3 3 5
6 7 0
0 1 1
0 2 1
0 3 3
1 3 1
2 3 1
Sample Output:
3 0->2->3 0

思路

这道题花了5个多小时…换了多种思路,最后使用了暴力记录所有最短路径的方法。

首先看清题目要求:

  1. 找最短路径;
  2. 若不唯一,找其中需要送出自行车最少的路径;
  3. 若还不唯一,找其中需要回收自行车最少的路径;

与PAT甲级真题 1003 Emergency (25分) C++实现(基于Dijkstra算法)不同,本题不满足最优子结构,用贪心法无法保证正确性。这就需要记录所有最短路径了。

依然基于Dijkstra算法找最短路径,并用三维数组记录每个节点的所有最短路径。

遍历所有最短路径,对每个路径上的节点,若有盈余的自行车则将其加到下个节点;若无盈余则将盈余归0,增加总需求量。最后找出最小需求量的路径,需求量相同时找最小的盈余量的路径即可。

只能沿着最短路径的方向收集多余自行车,分给后面的节点;后面节点多出来的不能填到前面去,只能计入回收总量。

例如路径上自行车数为5->0->10,并不能把最后一个节点上挪5个给中间的,需要送出5个,并回收5个。

所以总需求量不能用Cmax / 2 * 节点数 - 现有数来计算。

否则测试点5、7均无法通过。

大神解法

柳神同样记录了所有最短路径,但方法比较简便。

传统Dijkstra算法使用额外一维数组pre[]记录前导节点,通过pre[]可以倒推找回路径。若存在多条路径,则把pre[]扩展成二维数组pre[][]即可,pre[i][j]表示节点i的第j个前导节点。

从目标节点出发,可以直接找出其下一个节点。这样便相当于有了一个从目标节点出发,回到源节点的单向图。

深度遍历目标节点,即可考察完所有最短路径。

柳神代码:1018. Public Bike Management (30)-PAT甲级真题(Dijkstra + DFS)

代码

#include 
#include 
#include 
#include 
using namespace std;

int main(){
    int cmax, n, sp, m;
    cin >> cmax >> n >> sp >> m;
    n++;  //加上源点
    vector<int> C(n);  //自行车数
    for (int i=1; i<n; i++){
        cin >> C[i];
    }
    vector<vector<int> > T(n, vector<int>(n, INT_MAX));  //邻接矩阵
    for (int i=0; i<m; i++){
        int j, k, len;
        cin >> j >> k >> len;
        T[j][k] = len;
        T[k][j] = len;
    }

    //Dijkstra算法
    vector<int> dist(n, INT_MAX);
    dist[0] = 0;
    vector<bool> flag(n);  //已考察节点
    vector<vector<vector <int> > > path(n);  //path[i][j][k]是到节点i的第j条最短路径的第k个节点
    vector<int> temp = {0};
    path[0].push_back(temp);
    for (int i=0; i<n; i++){
        int minDist = INT_MAX;
        int minI = -1;
        for (int j=0; j<n; j++){
            if (!flag[j] && dist[j]<minDist){
                minDist = dist[j];
                minI = j;
            }
        }
        flag[minI] = true;
        //更新dist
        for (int j=0; j<n; j++){
            if (!flag[j] && T[minI][j]!=INT_MAX){  //必须判断是否存在路径,否则INT_MAX+1即为负数。
                int newDist = minDist + T[minI][j];
                if (newDist < dist[j]){
                    path[j] = path[minI];
                    for (int k=0; k<path[j].size(); k++){
                        path[j][k].push_back(j);
                    }
                    dist[j] = newDist;
                }
                else if (newDist == dist[j]){
                    for (int k=0; k<path[minI].size(); k++){
                        vector<int> temp = path[minI][k];
                        temp.push_back(j);
                        path[j].push_back(temp);
                    }
                }
            }
        }
    }
    
    int minNeed = INT_MAX;
    int minBack = INT_MAX;
    int minI = -1;
    int perfect = cmax / 2;
    for (int i=0; i<path[sp].size(); i++){
        int need = 0;
        int surplus = 0;
        for (int j=1; j<path[sp][i].size(); j++){
            int num = C[path[sp][i][j]] + surplus;
            if (num <= perfect){
                need += (perfect - num);
                surplus = 0;
            }
            else {
                surplus = num - perfect;
            }
        }
        if (need < minNeed) {
            minNeed = need;
            minBack = surplus;
            minI = i;
        }
        else if (need==minNeed){
            if (surplus < minBack){
                minBack = surplus;
                minI = i;
            }
        }
    }
    cout << minNeed << " 0";
    for (int i=1; i<path[sp][minI].size(); i++){
        cout << "->" << path[sp][minI][i];
    }
    cout << " " << minBack << endl;
    return 0;
}

你可能感兴趣的:(PAT,算法,数据结构,dijkstra)