就绪:进程已处于准备好运行的状态,即进程已分配到除CPU外的所有必要资源后,只要再获得CPU,便可立即执行。
执行:进程已经获得CPU,程序正在执行状态。
阻塞:正在执行的进程由于发生某事件(如I/O请求、申请缓冲区失败等)暂时无法继续执行的状态。
线程从最初的创建到最终的消亡,要经历若干个状态:创建(new)、就绪(runnable/start)、运行(running)、阻塞(blocked)、等待(waiting)、时间等待(time waiting) 和 消亡(dead/terminated)。
新建状态(New):
当用new操作符创建一个线程时, 例如new Thread®,线程还没有开始运行,此时线程处在新建状态。 当一个线程处于新生状态时,程序还没有开始运行线程中的代码
就绪状态(Runnable)
一个新创建的线程并不自动开始运行,要执行线程,必须调用线程的start()方法。当线程对象调用start()方法即启动了线程,start()方法创建线程运行的系统资源,并调度线程运行run()方法。当start()方法返回后,线程就处于就绪状态。
处于就绪状态的线程并不一定立即运行run()方法,线程还必须同其他线程竞争CPU时间,只有获得CPU时间才可以运行线程。因为在单CPU的计算机系统中,不可能同时运行多个线程,一个时刻仅有一个线程处于运行状态。因此此时可能有多个线程处于就绪状态。对多个处于就绪状态的线程是由Java运行时系统的线程调度程序(thread scheduler)来调度的。
运行状态(Running) :当线程获得CPU时间后,它才进入运行状态,真正开始执行run()方法.
阻塞状态(Blocked)
线程运行过程中,可能由于各种原因进入阻塞状态:
死亡状态(Dead):有两个原因会导致线程死亡:
为了确定线程在当前是否存活着(就是要么是可运行的,要么是被阻塞了),需要使用isAlive方法。如果是可运行或被阻塞,这个方法返回true; 如果线程仍旧是new状态且不是可运行的, 或者线程死亡了,则返回false.
进程同步的主要任务:是对多个相关进程在执行次序上进行协调,以使并发执行的诸进程之间能有效地共享资源和相互合作,从而使程序的执行具有可再现性。
同步机制遵循的原则:
(1)空闲让进;
(2)忙则等待(保证对临界区的互斥访问);
(3)有限等待(有限代表有限的时间,避免死等);
(4)让权等待,(当进程不能进入自己的临界区时,应该释放处理机,以免陷入忙等状态)。
进程通信,是指进程之间的信息交换(信息量少则一个状态或数值,多者则是成千上万个字节)。因此,对于用信号量进行的进程间的互斥和同步,由于其所交换的信息量少而被归结为低级通信。
所谓高级进程通信指:用户可以利用操作系统所提供的一组通信命令传送大量数据的一种通信方式。操作系统隐藏了进程通信的实现细节。或者说,通信过程对用户是透明的。
高级通信机制可归结为三大类:
共享存储器系统(存储器中划分的共享存储区);实际操作中对应的是“剪贴板”(剪贴板实际上是系统维护管理的一块内存区域)的通信方式,比如举例如下:word进程按下ctrl+c,在ppt进程按下ctrl+v,即完成了word进程和ppt进程之间的通信,复制时将数据放入到剪贴板,粘贴时从剪贴板中取出数据,然后显示在ppt窗口上。
消息传递系统(进程间的数据交换以消息(message)为单位,当今最流行的微内核操作系统中,微内核与服务器之间的通信,无一例外地都采用了消息传递机制。应用举例:邮槽(MailSlot)是基于广播通信体系设计出来的,它采用无连接的不可靠的数据传输。邮槽是一种单向通信机制,创建邮槽的服务器进程读取数据,打开邮槽的客户机进程写入数据。
管道通信系统(管道即:连接读写进程以实现他们之间通信的共享文件(pipe文件,类似先进先出的队列,由一个进程写,另一进程读))。实际操作中,管道分为:匿名管道、命名管道。匿名管道是一个未命名的、单向管道,通过父进程和一个子进程之间传输数据。匿名管道只能实现本地机器上两个进程之间的通信,而不能实现跨网络的通信。命名管道不仅可以在本机上实现两个进程间的通信,还可以跨网络实现两个进程间的通信。
管道:管道是单向的、先进先出的、无结构的、固定大小的字节流,它把一个进程的标准输出和另一个进程的标准输入连接在一起。写进程在管道的尾端写入数据,读进程在管道的道端读出数据。数据读出后将从管道中移走,其它读进程都不能再读到这些数据。管道提供了简单的流控制机制。进程试图读空管道时,在有数据写入管道前,进程将一直阻塞。同样地,管道已经满时,进程再试图写管道,在其它进程从管道中移走数据之前,写进程将一直阻塞。
注1:无名管道只能实现父子或者兄弟进程之间的通信,有名管道(FIFO)可以实现互不相关的两个进程之间的通信。
注2:用FIFO让一个服务器和多个客户端进行交流时候,每个客户在向服务器发送信息前建立自己的读管道,或者让服务器在得到数据后再建立管道。使用客户的进程号(pid)作为管道名是一种常用的方法。客户可以先把自己的进程号告诉服务器,然后再到那个以自己进程号命名的管道中读取回复。
信号量:信号量是一个计数器,可以用来控制多个进程对共享资源的访问。它常作为一种锁机制,防止某进程正在访问共享资源时,其它进程也访问该资源。因此,主要作为进程间以及同一进程内不同线程之间的同步手段。
消息队列:是一个在系统内核中用来保存消 息的队列,它在系统内核中是以消息链表的形式出现的。消息队列克服了信号传递信息少、管道只能承载无格式字节流以及缓冲区大小受限等缺点。
同步和互斥
当有多个线程的时候,经常需要去同步(注:同步不是同时刻)这些线程以访问同一个数据或资源。例如,假设有一个程序,其中一个线程用于把文件读到内存,而另一个线程用于统计文件中的字符数。当然,在把整个文件调入内存之前,统计它的计数是没有意义的。但是,由于每个操作都有自己的线程,操作系统会把两个线程当作是互不相干的任务分别执行,这样就可能在没有把整个文件装入内存时统计字数。为解决此问题,你必须使两个线程同步工作。
所谓同步,是指在不同进程之间的若干程序片断,它们的运行必须严格按照规定的某种先后次序来运行,这种先后次序依赖于要完成的特定的任务。如果用对资源的访问来定义的话,同步是指在互斥的基础上(大多数情况),通过其它机制实现访问者对资源的有序访问。在大多数情况下,同步已经实现了互斥,特别是所有写入资源的情况必定是互斥的。少数情况是指可以允许多个访问者同时访问资源。
所谓互斥,是指散布在不同进程之间的若干程序片断,当某个进程运行其中一个程序片段时,其它进程就不能运行它们之中的任一程序片段,只能等到该进程运行完这个程序片段后才可以运行。如果用对资源的访问来定义的话,互斥某一资源同时只允许一个访问者对其进行访问,具有唯一性和排它性。但互斥无法限制访问者对资源的访问顺序,即访问是无序的。
多线程同步和互斥有几种实现方法
用户模式下的方法有:原子操作(例如一个单一的全局变量),临界区。
内核模式下的方法有:事件,信号量,互斥量。
在操作系统中,进程是占有资源的最小单位(线程可以访问其所在进程内的所有资源,但线程本身并不占有资源或仅仅占有一点必须资源)。但对于某些资源来说,其在同一时间只能被一个进程所占用。这些一次只能被一个进程所占用的资源就是所谓的临界资源。典型的临界资源比如物理上的打印机,或是存在硬盘或内存中被多个进程所共享的一些变量和数据等(如果这类资源不被看成临界资源加以保护,那么很有可能造成丢数据的问题)。
对于临界资源的访问,必须是互斥进行。也就是当临界资源被占用时,另一个申请临界资源的进程会被阻塞,直到其所申请的临界资源被释放。而进程内访问临界资源的代码被成为临界区。
当用户创立多个线程/进程时,如果不同线程/进程同时读写相同的内容,则可能造成读写错误,或者数据不一致。此时,需要通过加锁的方式,控制临界区(critical section)的访问权限。对于semaphore而言,在初始化变量的时候可以控制允许多少个线程/进程同时访问一个临界区,其他的线程/进程会被堵塞,直到有人解锁。
Mutex相当于只允许一个线程/进程访问的semaphore。此外,根据实际需要,人们还实现了一种读写锁(read-write lock),它允许同时存在多个阅读者(reader),但任何时候至多只有一个写者(writer),且不能于读者共存。
(1)一个线程只能属于一个进程,而一个进程可以有多个线程,但至少有一个线程。线程是操作系统可识别的最小执行和调度单位。
(2)资源分配给进程,同一进程的所有线程共享该进程的所有资源。 同一进程中的多个线程共享代码段(代码和常量),数据段(全局变量和静态变量),扩展段(堆存储)。但是每个线程拥有自己的栈段,栈段又叫运行时段,用来存放所有局部变量和临时变量。
(3)处理机分给线程,即真正在处理机上运行的是线程。
(4)线程在执行过程中,需要协作同步。不同进程的线程间要利用消息通信的办法实现同步。
进程是具有一定独立功能的程序关于某个数据集合上的一次运行活动,进程是系统进行资源分配和调度的一个独立单位。
线程是进程的一个实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位。
(1)进程有自己的独立地址空间,线程没有
(2)进程是资源分配的最小单位,线程是CPU调度的最小单位
(3)进程和线程通信方式不同(线程之间的通信比较方便。同一进程下的线程共享数据(比如全局变量,静态变量),通过这些数据来通信不仅快捷而且方便,当然如何处理好这些访问的同步与互斥正是编写多线程程序的难点。而进程之间的通信只能通过进程通信的方式进行。)
(4)进程上下文切换开销大,线程开销小
(5)一个进程挂掉了不会影响其他进程,而线程挂掉了会影响其他线程
(6)对进程进程操作一般开销都比较大,对线程开销就小了
进程切换分两步:
1.切换页目录以使用新的地址空间
2.切换内核栈和硬件上下文
对于linux来说,线程和进程的最大区别就在于地址空间,对于线程切换,第1步是不需要做的,第2是进程和线程切换都要做的。
切换的性能消耗:
线程上下文切换和进程上下问切换一个最主要的区别是线程的切换虚拟内存空间依然是相同的,但是进程切换是不同的。这两种上下文切换的处理都是通过操作系统内核来完成的。内核的这种切换过程伴随的最显著的性能损耗是将寄存器中的内容切换出。
另外一个隐藏的损耗是上下文的切换会扰乱处理器的缓存机制。简单的说,一旦去切换上下文,处理器中所有已经缓存的内存地址一瞬间都作废了。还有一个显著的区别是当你改变虚拟内存空间的时候,处理的页表缓冲(processor’s Translation Lookaside Buffer (TLB))或者相当的神马东西会被全部刷新,这将导致内存的访问在一段时间内相当的低效。但是在线程的切换中,不会出现这个问题。
首先来一句概括的总论:进程和线程都是一个时间段的描述,是CPU工作时间段的描述。
下面细说背景:
CPU+RAM+各种资源(比如显卡,光驱,键盘,GPS, 等等外设)构成我们的电脑,但是电脑的运行,实际就是CPU和相关寄存器以及RAM之间的事情。
一个最最基础的事实:CPU太快,太快,太快了,寄存器仅仅能够追的上他的脚步,RAM和别的挂在各总线上的设备完全是望其项背。那当多个任务要执行的时候怎么办呢?轮流着来?或者谁优先级高谁来?不管怎么样的策略,一句话就是在CPU看来就是轮流着来。
一个必须知道的事实:执行一段程序代码,实现一个功能的过程介绍 ,当得到CPU的时候,相关的资源必须也已经就位,就是显卡啊,GPS啊什么的必须就位,然后CPU开始执行。这里除了CPU以外所有的就构成了这个程序的执行环境,也就是我们所定义的程序上下文。当这个程序执行完了,或者分配给他的CPU执行时间用完了,那它就要被切换出去,等待下一次CPU的临幸。在被切换出去的最后一步工作就是保存程序上下文,因为这个是下次他被CPU临幸的运行环境,必须保存。
串联起来的事实:前面讲过在CPU看来所有的任务都是一个一个的轮流执行的,具体的轮流方法就是:先加载程序A的上下文,然后开始执行A,保存程序A的上下文,调入下一个要执行的程序B的程序上下文,然后开始执行B,保存程序B的上下文。。。。
========= 重要的东西出现了========
进程和线程就是这样的背景出来的,两个名词不过是对应的CPU时间段的描述,名词就是这样的功能。
进程就是包换上下文切换的程序执行时间总和 = CPU加载上下文+CPU执行+CPU保存上下文
线程是什么呢?
进程的颗粒度太大,每次都要有上下的调入,保存,调出。如果我们把进程比喻为一个运行在电脑上的软件,那么一个软件的执行不可能是一条逻辑执行的,必定有多个分支和多个程序段,就好比要实现程序A,实际分成 a,b,c等多个块组合而成。那么这里具体的执行就可能变成:
程序A得到CPU =》CPU加载上下文,开始执行程序A的a小段,然后执行A的b小段,然后再执行A的c小段,最后CPU保存A的上下文。
这里a,b,c的执行是共享了A的上下文,CPU在执行的时候没有进行上下文切换的。这里的a,b,c就是线程,也就是说线程是共享了进程的上下文环境,的更为细小的CPU时间段。
再一个总结:
进程和线程都是一个时间段的描述,是CPU工作时间段的描述,不过是颗粒大小不同。
进程(process)与线程(thread)最大的区别是进程拥有自己的地址空间,某进程内的线程对于其他进程不可见,即进程A不能通过传地址的方式直接读写进程B的存储区域。进程之间的通信需要通过进程间通信(Inter-process communication,IPC)。与之相对的,同一进程的各线程间之间可以直接通过传递地址或全局变量的方式传递信息。
进程作为操作系统中拥有资源和独立调度的基本单位,可以拥有多个线程。通常操作系统中运行的一个程序就对应一个进程。在同一进程中,线程的切换不会引起进程切换。在不同进程中进行线程切换,如从一个进程内的线程切换到另一个进程中的线程时,会引起进程切换。相比进程切换,线程切换的开销要小很多。线程于进程相互结合能够提高系统的运行效率。
线程可以分为两类:
用户级线程(user level thread):对于这类线程,有关线程管理的所有工作都由应用程序完成,内核意识不到线程的存在。在应用程序启动后,操作系统分配给该程序一个进程号,以及其对应的内存空间等资源。应用程序通常先在一个线程中运行,该线程被成为主线程。在其运行的某个时刻,可以通过调用线程库中的函数创建一个在相同进程中运行的新线程。用户级线程的好处是非常高效,不需要进入内核空间,但并发效率不高。
内核级线程(kernel level thread):对于这类线程,有关线程管理的所有工作由内核完成,应用程序没有进行线程管理的代码,只能调用内核线程的接口。内核维护进程及其内部的每个线程,调度也由内核基于线程架构完成。内核级线程的好处是,内核可以将不同线程更好地分配到不同的CPU,以实现真正的并行计算。
事实上,在现代操作系统中,往往使用组合方式实现多线程,即线程创建完全在用户空间中完成,并且一个应用程序中的多个用户级线程被映射到一些内核级线程上,相当于是一种折中方案。
高级调度:(High-Level Scheduling)又称为作业调度,它决定把后备作业调入内存运行;
低级调度:(Low-Level Scheduling)又称为进程调度,它决定把就绪队列的某进程获得CPU;
中级调度:(Intermediate-Level Scheduling)又称为在虚拟存储器中引入,在内、外存对换区进行进程对换。
非抢占式:分派程序一旦把处理机分配给某进程后便让它一直运行下去,直到进程完成或发生进程调度进程调度某事件而阻塞时,才把处理机分配给另一个进程。
抢占式:操作系统将正在运行的进程强行暂停,由调度程序将CPU分配给其他就绪进程的调度方式。
响应时间: 从用户输入到产生反应的时间
周转时间: 从任务开始到任务结束的时间
CPU任务可以分为交互式任务和批处理任务,调度最终的目标是合理的使用CPU,使得交互式任务的响应时间尽可能短,用户不至于感到延迟,同时使得批处理任务的周转时间尽可能短,减少用户等待的时间。
FIFO或First Come, First Served (FCFS)先来先服务
调度的顺序就是任务到达就绪队列的顺序。
公平、简单(FIFO队列)、非抢占、不适合交互式。
未考虑任务特性,平均等待时间可以缩短。
Shortest Job First (SJF):
最短的作业(CPU区间长度最小)最先调度。
SJF可以保证最小的平均等待时间。
Shortest Remaining Job First (SRJF)
SJF的可抢占版本,比SJF更有优势。
SJF(SRJF): 如何知道下一CPU区间大小?根据历史进行预测: 指数平均法。
优先权调度
每个任务关联一个优先权,调度优先权最高的任务。
注意:优先权太低的任务一直就绪,得不到运行,出现“饥饿”现象。
Round-Robin(RR)轮转调度算法
设置一个时间片,按时间片来轮转调度(“轮叫”算法)
优点: 定时有响应,等待时间较短;缺点: 上下文切换次数较多;
时间片太大,响应时间太长;吞吐量变小,周转时间变长;当时间片过长时,退化为FCFS。
多级队列调度
按照一定的规则建立多个进程队列
不同的队列有固定的优先级(高优先级有抢占权)
不同的队列可以给不同的时间片和采用不同的调度方法
存在问题1:没法区分I/O bound和CPU bound;
存在问题2:也存在一定程度的“饥饿”现象;
多级反馈队列
在多级队列的基础上,任务可以在队列之间移动,更细致的区分任务。
可以根据“享用”CPU时间多少来移动队列,阻止“饥饿”。
最通用的调度算法,多数OS都使用该方法或其变形,如UNIX、Windows等。
多级反馈队列调度算法描述:
进程在进入待调度的队列等待时,首先进入优先级最高的Q1等待。
首先调度优先级高的队列中的进程。若高优先级中队列中已没有调度的进程,则调度次优先级队列中的进程。例如:Q1,Q2,Q3三个队列,只有在Q1中没有进程等待时才去调度Q2,同理,只有Q1,Q2都为空时才会去调度Q3。
对于同一个队列中的各个进程,按照时间片轮转法调度。比如Q1队列的时间片为N,那么Q1中的作业在经历了N个时间片后若还没有完成,则进入Q2队列等待,若Q2的时间片用完后作业还不能完成,一直进入下一级队列,直至完成。
在低优先级的队列中的进程在运行时,又有新到达的作业,那么在运行完这个时间片后,CPU马上分配给新到达的作业(抢占式)。
一个简单的例子
假设系统中有3个反馈队列Q1,Q2,Q3,时间片分别为2,4,8。现在有3个作业J1,J2,J3分别在时间 0 ,1,3时刻到达。而它们所需要的CPU时间分别是3,2,1个时间片。
时刻0 J1到达。 于是进入到队列1 ,运行1个时间片 ,时间片还未到,此时J2到达。
时刻1 J2到达。 由于时间片仍然由J1掌控,于是等待。J1在运行了1个时间片后,已经完成了在Q1中的2个时间片的限制,于是J1置于Q2等待被调度。现在处理机分配给J2。
时刻2 J1进入Q2等待调度,J2获得CPU开始运行。
时刻3 J3到达,由于J2的时间片未到,故J3在Q1等待调度,J1也在Q2等待调度。
时刻4 J2处理完成,由于J3,J1都在等待调度,但是J3所在的队列比J1所在的队列的优先级要高,于是J3被调度,J1继续在Q2等待。
时刻5 J3经过1个时间片,完成。
时刻6 由于Q1已经空闲,于是开始调度Q2中的作业,则J1得到处理器开始运行。 J1再经过一个时间片,完成了任务。于是整个调度过程结束。
定义:如果一组进程中的每一个进程都在等待仅由该组进程中的其他进程才能引发的事件,那么该组进程就是死锁的。或者在两个或多个并发进程中,如果每个进程持有某种资源而又都等待别的进程释放它或它们现在保持着的资源,在未改变这种状态之前都不能向前推进,称这一组进程产生了死锁。通俗地讲,就是两个或多个进程被无限期地阻塞、相互等待的一种状态。
互斥条件(Mutual exclusion):资源不能被共享,只能由一个进程使用。
请求与保持条件(Hold and wait):已经得到资源的进程可以再次申请新的资源。
非抢占条件(No pre-emption):已经分配的资源不能从相应的进程中被强制地剥夺。
循环等待条件(Circular wait):系统中若干进程组成环路,该环路中每个进程都在等待相邻进程正占用的资源。
死锁预防的基本思想是动态地检测资源分配状态,以确保循环等待条件不成立,从而确保系统处于安全状态。所谓安全状态是指:如果系统能按某个顺序为每个进程分配资源(不超过其最大值),那么系统状态是安全的,换句话说就是,如果存在一个安全序列,那么系统处于安全状态。资源分配图算法和银行家算法是两种经典的死锁避免的算法,其可以确保系统始终处于安全状态。其中,资源分配图算法应用场景为每种资源类型只有一个实例(申请边,分配边,需求边,不形成环才允许分配),而银行家算法应用于每种资源类型可以有多个实例的场景。
具体方法包括:
打破互斥条件:允许进程同时访问某些资源。但是,有些资源是不能被多个进程所共享的,这是由资源本身属性所决定的,因此,这种办法通常并无实用价值。
打破占有并等待条件:可以实行资源预先分配策略(进程在运行前一次性向系统申请它所需要的全部资源,若所需全部资源得不到满足,则不分配任何资源,此进程暂不运行;只有当系统能满足当前进程所需的全部资源时,才一次性将所申请资源全部分配给该线程)或者只允许进程在没有占用资源时才可以申请资源(一个进程可申请一些资源并使用它们,但是在当前进程申请更多资源之前,它必须全部释放当前所占有的资源)。但是这种策略也存在一些缺点:在很多情况下,无法预知一个进程执行前所需的全部资源,因为进程是动态执行的,不可预知的;同时,会降低资源利用率,导致降低了进程的并发性。
打破非抢占条件:允许进程强行从占有者哪里夺取某些资源。也就是说,但一个进程占有了一部分资源,在其申请新的资源且得不到满足时,它必须释放所有占有的资源以便让其它线程使用。这种预防死锁的方式实现起来困难,会降低系统性能。
打破循环等待条件:实行资源有序分配策略。对所有资源排序编号,所有进程对资源的请求必须严格按资源序号递增的顺序提出,即只有占用了小号资源才能申请大号资源,这样就不回产生环路,预防死锁的发生。
死锁解除的常用两种方法为进程终止和资源抢占。所谓进程终止是指简单地终止一个或多个进程以打破循环等待,包括两种方式:终止所有死锁进程和一次只终止一个进程直到取消死锁循环为止;所谓资源抢占是指从一个或多个死锁进程那里抢占一个或多个资源,此时必须考虑三个问题:
首先介绍一个概念“池化技术 ”。池化技术就是:提前保存大量的资源,以备不时之需以及重复使用。池化技术应用广泛,如内存池,线程池,连接池等等。内存池相关的内容,建议看看Apache、Nginx等开源web服务器的内存池实现。
由于在实际应用当做,分配内存、创建进程、线程都会设计到一些系统调用,系统调用需要导致程序从用户态切换到内核态,是非常耗时的操作。因此,当程序中需要频繁的进行内存申请释放,进程、线程创建销毁等操作时,通常会使用内存池、进程池、线程池技术来提升程序的性能。
线程池:线程池的原理很简单,类似于操作系统中的缓冲区的概念,它的流程如下:先启动若干数量的线程,并让这些线程都处于睡眠状态,当需要一个开辟一个线程去做具体的工作时,就会唤醒线程池中的某一个睡眠线程,让它去做具体工作,当工作完成后,线程又处于睡眠状态,而不是将线程销毁。
进程池与线程池同理。
内存池:内存池是指程序预先从操作系统申请一块足够大内存,此后,当程序中需要申请内存的时候,不是直接向操作系统申请,而是直接从内存池中获取;同理,当程序释放内存的时候,并不真正将内存返回给操作系统,而是返回内存池。当程序退出(或者特定时间)时,内存池才将之前申请的内存真正释放。
预处理:条件编译,头文件包含,宏替换的处理,生成.i文件。
编译:将预处理后的文件转换成汇编语言,生成.s文件
汇编:汇编变为目标代码(机器代码)生成.o的文件
链接:连接目标代码,生成可执行程序
静态库:静态库是一个外部函数与变量的集合体。静态库的文件内容,通常包含一堆程序员自定的变量与函数,其内容不像动态链接库那么复杂,在编译期间由编译器与链接器将它集成至应用程序内,并制作成目标文件以及可以独立运作的可执行文件。而这个可执行文件与编译可执行文件的程序,都是一种程序的静态创建(static build)。
动态库:静态库很方便,但是如果我们只是想用库中的某一个函数,却仍然得把所有的内容都链接进去。一个更现代的方法则是使用共享库,避免了在文件中静态库的大量重复。
动态链接可以在首次载入的时候执行(load-time linking),这是 Linux 的标准做法,会由动态链接器ld-linux.so 完成,比方标准 C 库(libc.so) 通常就是动态链接的,这样所有的程序可以共享同一个库,而不用分别进行封装。
动态链接也可以在程序开始执行的时候完成(run-time linking),在 Linux 中使用 dlopen()接口来完成(会使用函数指针),通常用于分布式软件,高性能服务器上。而且共享库也可以在多个进程间共享。
链接使得我们可以用多个对象文件构造我们的程序。可以在程序的不同阶段进行(编译、载入、运行期间均可),理解链接可以帮助我们避免遇到奇怪的错误。
区别:
内存的发展历程
虚拟内存
虚拟内存允许执行进程不必完全在内存中。虚拟内存的基本思想是:每个进程拥有独立的地址空间,这个空间被分为大小相等的多个块,称为页(Page),每个页都是一段连续的地址。这些页被映射到物理内存,但并不是所有的页都必须在内存中才能运行程序。当程序引用到一部分在物理内存中的地址空间时,由硬件立刻进行必要的映射;当程序引用到一部分不在物理内存中的地址空间时,由操作系统负责将缺失的部分装入物理内存并重新执行失败的命令。这样,对于进程而言,逻辑上似乎有很大的内存空间,实际上其中一部分对应物理内存上的一块(称为帧,通常页和帧大小相等),还有一些没加载在内存中的对应在硬盘上,如图所示。
由图中可以看出,虚拟内存实际上可以比物理内存大。当访问虚拟内存时,会访问MMU(内存管理单元)去匹配对应的物理地址(比如图5的0,1,2)。如果虚拟内存的页并不存在于物理内存中(如图5的3,4),会产生缺页中断,从磁盘中取得缺的页放入内存,如果内存已满,还会根据某种算法将磁盘中的页换出。
与传统存储器比较虚拟存储器有以下三个主要特征:
虚拟内存的应用与优点
虚拟内存很适合在多道程序设计系统中使用,许多程序的片段同时保存在内存中。当一个程序等待它的一部分读入内存时,可以把CPU交给另一个进程使用。虚拟内存的使用可以带来以下好处:
在内存中可以保留多个进程,系统并发度提高
解除了用户与内存之间的紧密约束,进程可以比内存的全部空间还大
虚拟内存的实现方式
时间上的局部性:最近被访问的页在不久的将来还会被访问;
空间上的局部性:内存中被访问的页周围的页也很可能被访问。
段式存储管理是一种符合用户视角的内存分配管理方案。在段式存储管理中,将程序的地址空间划分为若干段(segment),如代码段,数据段,堆栈段;这样每个进程有一个二维地址空间,相互独立,互不干扰。段式管理的优点是:没有内碎片(因为段大小可变,改变段大小来消除内碎片)。但段换入换出时,会产生外碎片(比如4k的段换5k的段,会产生1k的外碎片)
页式存储管理方案是一种用户视角内存与物理内存相分离的内存分配管理方案。在页式存储管理中,将程序的逻辑地址划分为固定大小的页(page),而物理内存划分为同样大小的帧,程序加载时,可以将任意一页放入内存中任意一个帧,这些帧不必连续,从而实现了离散分离。页式存储管理的优点是:没有外碎片(因为页的大小固定),但会产生内碎片(一个页可能填充不满)。
两者的不同点:
目的不同:分页是由于系统管理的需要而不是用户的需要,它是信息的物理单位;分段的目的是为了能更好地满足用户的需要,它是信息的逻辑单位,它含有一组其意义相对完整的信息;
大小不同:页的大小固定且由系统决定,而段的长度却不固定,由其所完成的功能决定;
地址空间不同: 段向用户提供二维地址空间;页向用户提供的是一维地址空间;
信息共享:段是信息的逻辑单位,便于存储保护和信息的共享,页的保护和共享受到限制;
内存碎片:页式存储管理的优点是没有外碎片(因为页的大小固定),但会产生内碎片(一个页可能填充不满);而段式管理的优点是没有内碎片(因为段大小可变,改变段大小来消除内碎片)。但段换入换出时,会产生外碎片(比如4k的段换5k的段,会产生1k的外碎片)。
在内存管理中,内部碎片是已经被分配出去的的内存空间大于请求所需的内存空间。
外部碎片是指还没有分配出去,但是由于大小太小而无法分配给申请空间的新进程的内存空间空闲块。
固定分区存在内部碎片,可变式分区分配会存在外部碎片;
页式虚拟存储系统存在内部碎片;段式虚拟存储系统存在外部碎片
为了有效的利用内存,使内存产生更少的碎片,要对内存分页,内存以页为单位来使用,最后一页往往装不满,于是形成了内部碎片。
为了共享要分段,在段的换入换出时形成外部碎片,比如5K的段换出后,有一个4k的段进来放到原来5k的地方,于是形成1k的外部碎片。
操作系统将内存按照页面进行管理,在需要的时候才把进程相应的部分调入内存。当产生缺页中断时,需要选择一个页面写入。如果要换出的页面在内存中被修改过,变成了“脏”页面,那就需要先写会到磁盘。页面置换算法,就是要选出最合适的一个页面,使得置换的效率最高。页面置换算法有很多,简单介绍几个,重点介绍比较重要的LRU及其实现算法。
最理想的状态下,我们给页面做个标记,挑选一个最远才会被再次用到的页面调出。当然,这样的算法不可能实现,因为不确定一个页面在何时会被用到。
这种算法的思想和队列是一样的,该算法总是淘汰最先进入内存的页面,即选择在内存中驻留时间最久的页面予淘汰。实现:把一个进程已调入内存的页面按先后次序链接成一个队列,并且设置一个指针总是指向最老的页面。缺点:对于有些经常被访问的页面如含有全局变量、常用函数、例程等的页面,不能保证这些不被淘汰。
颠簸本质上是指频繁的页调度行为,具体来讲,进程发生缺页中断,这时,必须置换某一页。然而,其他所有的页都在使用,它置换一个页,但又立刻再次需要这个页。因此,会不断产生缺页中断,导致整个系统的效率急剧下降,这种现象称为颠簸(抖动)。
内存颠簸的解决策略包括:
如果是因为页面替换策略失误,可以修改替换算法来解决这个问题;
如果是因为运行的程序太多,造成程序无法同时将所有频繁访问的页面调入内存,则要降低多道程序的数量;
否则,还剩下两个办法:终止该进程或增加物理内存容量。
守护进程:运行在后台的一种特殊进程,独立于控制终端并周期性地执行某些任务。
僵尸进程:一个进程 fork 子进程,子进程退出,而父进程没有wait/waitpid子进程,那么子进程的进程描述符仍保存在系统中,这样的进程称为僵尸进程
孤儿进程:一个父进程退出,而它的一个或多个子进程还在运行,这些子进程称为孤儿进程。(孤儿进程将由 init 进程收养并对它们完成状态收集工作)