泊松分布经常出现在IT类技术面试中,虽然工作中我还没遇到需要用泊松分布解决的问题,但我想深入理解泊松分布对于服务器处理访问请求,以及对各种小概率事件的估计预测都有重要作用,所以花时间整理了下资料,以备忘及分享讨论。
泊松分布适合于描述单位时间内随机事件发生的次数的概率分布。如某一服务设施在一定时间内受到的服务请求的次数,电话交换机接到呼叫的次数、汽车站台的候客人数、机器出现的故障数、自然灾害发生的次数、DNA序列的变异数、放射性原子核的衰变数,宇宙中单位体积内星球的个数 ,耕地上单位面积内杂草的数目等 。
泊松分布的概率质量函数为:
泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生率。
在二项分布的伯努利试验中,如果试验次数n很大,二项分布的概率p很小,且乘积λ= n p比较适中,则事件出现的次数的概率可以用泊松分布来逼近。事实上,二项分布可以看作泊松分布在离散时间上的对应物。
证明如下。首先,回顾e的定义:
二项分布的定义:
如果令, 趋于无穷时的极限:
让我们先通过一个例子,了解什么是"泊松分布"。
已知某家小杂货店,平均每周售出2个水果罐头。请问该店水果罐头的最佳库存量是多少?
假定不存在季节因素,可以近似认为,这个问题满足以下三个条件:
(1)顾客购买水果罐头是小概率事件。
(2)购买水果罐头的顾客是独立的,不会互相影响。
(3)顾客购买水果罐头的概率是稳定的。
在统计学上,只要某类事件满足上面三个条件,它就服从"泊松分布"。
泊松分布的公式如下:
各个参数的含义:
P:每周销售k个罐头的概率。
X:水果罐头的销售变量。
k:X的取值(0,1,2,3...)。
λ:每周水果罐头的平均销售量,是一个常数,本题为2。
根据公式,计算得到每周销量的分布:
从上表可见,如果存货4个罐头,95%的概率不会缺货(平均每19周发生一次);如果存货5个罐头,98%的概率不会缺货(平均59周发生一次)。
给定n个样本值ki,希望得到从中推测出总体的泊松分布参数λ的估计。为计算最大似然估计值, 列出对数似然函数:
对函数L取相对于λ的导数并令其等于零:
解得λ从而得到一个驻点(stationary point):
检查函数L的二阶导数,发现对所有的λ 与ki大于零的情况二阶导数都为负。因此求得的驻点是对数似然函数L的极大值点:
对某公共汽车站的客流做调查,统计了某天上午10:30到11:47来到候车的乘客情况。假定来到候车的乘客各批(每批可以是1人也可以是多人)是互相独立发生的。观察每20秒区间来到候车的乘客批次,共观察77分钟*3=231次,共得到230个观察记录。其中来到0批、1批、2批、3批、4批及4批以上的观察记录分别是100个、81个、34个、9个、6个。使用极大似真估计(MLE),得到的估计为200/231=0.8658。
概率质量函数
|
|
累积分布函数
|
|
参数 | |
---|---|
支撑集 | |
概率質量函數 | |
累积分布函数 | |
期望值 | |
众数 | |
方差 | |
偏度 | |
峰度 | |
动差生成函数 | |
特性函数 |
参考:
【1】 http://zh.wikipedia.org/wiki/%E6%B3%8A%E6%9D%BE%E5%88%86%E4%BD%88 泊松分布 wiki
【2】 http://www.ruanyifeng.com/blog/2013/01/poisson_distribution.html 泊松分布与美国枪击案
【3】 http://maider.blog.sohu.com/304621504.html 如何理解泊松分布和泊松过程