【LeetCode】每日一题(九)126. 单词接龙 II 广度优先搜索bfs 图 双向广度优先搜索+回溯

126. 单词接龙 II

20200607

难度:困难

题目描述

给定两个单词(beginWord 和 endWord)和一个字典 wordList,找出所有从 beginWord 到 endWord 的最短转换序列。转换需遵循如下规则:

  1. 每次转换只能改变一个字母。
  2. 转换过程中的中间单词必须是字典中的单词。

说明:

  • 如果不存在这样的转换序列,返回一个空列表。
  • 所有单词具有相同的长度。
  • 所有单词只由小写字母组成。
  • 字典中不存在重复的单词。
  • 你可以假设 beginWord 和 endWord 是非空的,且二者不相同。

示例 1:

输入:
beginWord = "hit",
endWord = "cog",
wordList = ["hot","dot","dog","lot","log","cog"]

输出:
[
  ["hit","hot","dot","dog","cog"],
  ["hit","hot","lot","log","cog"]
]

示例2:

输入:
beginWord = "hit"
endWord = "cog"
wordList = ["hot","dot","dog","lot","log"]

输出: []

解释: endWord "cog" 不在字典中,所以不存在符合要求的转换序列。

Solution

方法一:

广度优先搜索bfs 图

来自官方题解

class Solution {
    private static final int INF = 1 << 20;
    private Map<String, Integer> wordId; // 单词到id的映射
    private ArrayList<String> idWord; // id到单词的映射
    private ArrayList<Integer>[] edges; // 图的边

    public Solution() {
        wordId = new HashMap<>();
        idWord = new ArrayList<>();
    }

    public List<List<String>> findLadders(String beginWord, String endWord, List<String> wordList) {
        int id = 0;
        // 将wordList所有单词加入wordId中 相同的只保留一个 // 并为每一个单词分配一个id
        for (String word : wordList) {
            if (!wordId.containsKey(word)) { 
                wordId.put(word, id++);
                idWord.add(word);
            }
        }
        // 若endWord不在wordList中 则无解
        if (!wordId.containsKey(endWord)) {
            return new ArrayList<>();
        }
        // 把beginWord也加入wordId中
        if (!wordId.containsKey(beginWord)) {
            wordId.put(beginWord, id++);
            idWord.add(beginWord);
        }

        // 初始化存边用的数组
        edges = new ArrayList[idWord.size()];
        for (int i = 0; i < idWord.size(); i++) {
            edges[i] = new ArrayList<>();
        }
        // 添加边
        for (int i = 0; i < idWord.size(); i++) {
            for (int j = i + 1; j < idWord.size(); j++) {
                // 若两者可以通过转换得到 则在它们间建一条无向边
                if (transformCheck(idWord.get(i), idWord.get(j))) {
                    edges[i].add(j);
                    edges[j].add(i);
                }
            }
        }

        int dest = wordId.get(endWord); // 目的ID
        List<List<String>> res = new ArrayList<>(); // 存答案
        int[] cost = new int[id]; // 到每个点的代价
        for (int i = 0; i < id; i++) {
            cost[i] = INF; // 每个点的代价初始化为无穷大
        }

        // 将起点加入队列 并将其cost设为0
        Queue<ArrayList<Integer>> q = new LinkedList<>();
        ArrayList<Integer> tmpBegin = new ArrayList<>();
        tmpBegin.add(wordId.get(beginWord));
        q.add(tmpBegin);
        cost[wordId.get(beginWord)] = 0;

        // 开始广度优先搜索
        while (!q.isEmpty()) {
            ArrayList<Integer> now = q.poll();
            int last = now.get(now.size() - 1); // 最近访问的点
            if (last == dest) { // 若该点为终点则将其存入答案res中
                ArrayList<String> tmp = new ArrayList<>();
                for (int index : now) {
                    tmp.add(idWord.get(index)); // 转换为对应的word
                }
                res.add(tmp);
            } else { // 该点不为终点 继续搜索
                for (int i = 0; i < edges[last].size(); i++) {
                    int to = edges[last].get(i);
                    // 此处<=目的在于把代价相同的不同路径全部保留下来
                    if (cost[last] + 1 <= cost[to]) {
                        cost[to] = cost[last] + 1;
                        // 把to加入路径中
                        ArrayList<Integer> tmp = new ArrayList<>(now); tmp.add(to);
                        q.add(tmp); // 把这个路径加入队列
                    }
                }
            }
        }
        return res;
    }

    // 两个字符串是否可以通过改变一个字母后相等
    boolean transformCheck(String str1, String str2) {
        int differences = 0;
        for (int i = 0; i < str1.length() && differences < 2; i++) {
            if (str1.charAt(i) != str2.charAt(i)) {
                ++differences;
            }
        }
        return differences == 1;
    } 
}

方法二:

双向bfs + 回溯

由于本题起点和终点固定,所以可以从起点和终点同时开始进行双向广度优先搜索

参考题解

public class Solution {
    public List<List<String>> findLadders(String beginWord, String endWord, List<String> wordList) {
        // 先将 wordList 放到哈希表里,便于判断某个单词是否在 wordList 里
        List<List<String>> res = new ArrayList<>();
        Set<String> wordSet = new HashSet<>(wordList);
        if (wordSet.size() == 0 || !wordSet.contains(endWord)) {
            return res;
        }
        // 第 1 步:使用双向广度优先遍历得到后继结点列表 successors
        // key:字符串,value:广度优先遍历过程中 key 的后继结点列表
        Map<String, Set<String>> successors = new HashMap<>();
        boolean found = bidirectionalBfs(beginWord, endWord, wordSet, successors);
        if (!found) {
            return res;
        }
        // 第 2 步:基于后继结点列表 successors ,使用回溯算法得到所有最短路径列表
        Deque<String> path = new ArrayDeque<>();
        path.addLast(beginWord);
        dfs(beginWord, endWord, successors, path, res);
        return res;
    }

    private boolean bidirectionalBfs(String beginWord,
                                     String endWord,
                                     Set<String> wordSet,
                                     Map<String, Set<String>> successors) {
        // 记录访问过的单词
        Set<String> visited = new HashSet<>();
        visited.add(beginWord);
        visited.add(endWord);

        Set<String> beginVisited = new HashSet<>();
        beginVisited.add(beginWord);
        Set<String> endVisited = new HashSet<>();
        endVisited.add(endWord);

        int wordLen = beginWord.length();
        boolean forward = true;
        boolean found = false;
        // 在保证了 beginVisited 总是较小(可以等于)大小的集合前提下,&& !endVisited.isEmpty() 可以省略
        while (!beginVisited.isEmpty() && !endVisited.isEmpty()) {
            // 一直保证 beginVisited 是相对较小的集合,方便后续编码
            if (beginVisited.size() > endVisited.size()) {
                Set<String> temp = beginVisited;
                beginVisited = endVisited;
                endVisited = temp;

                // 只要交换,就更改方向,以便维护 successors 的定义
                forward = !forward;
            }
            Set<String> nextLevelVisited = new HashSet<>();
            // 默认 beginVisited 是小集合,因此从 beginVisited 出发
            for (String currentWord : beginVisited) {
                char[] charArray = currentWord.toCharArray();
                for (int i = 0; i < wordLen; i++) {
                    char originChar = charArray[i];
                    for (char j = 'a'; j <= 'z'; j++) {
                        if (charArray[i] == j) {
                            continue;
                        }
                        charArray[i] = j;
                        String nextWord = new String(charArray);
                        if (wordSet.contains(nextWord)) {
                            if (endVisited.contains(nextWord)) {
                                found = true;
                                // 在另一侧找到单词以后,还需把这一层关系添加到「后继结点列表」
                                addToSuccessors(successors, forward, currentWord, nextWord);
                            }

                            if (!visited.contains(nextWord)) {
                                nextLevelVisited.add(nextWord);
                                addToSuccessors(successors, forward, currentWord, nextWord);
                            }
                        }
                    }
                    charArray[i] = originChar;
                }
            }
            beginVisited = nextLevelVisited;
            visited.addAll(nextLevelVisited);
            if (found) {
                break;
            }
        }
        return found;
    }

    private void dfs(String beginWord,
                     String endWord,
                     Map<String, Set<String>> successors,
                     Deque<String> path,
                     List<List<String>> res) {

        if (beginWord.equals(endWord)) {
            res.add(new ArrayList<>(path));
            return;
        }

        if (!successors.containsKey(beginWord)) {
            return;
        }

        Set<String> successorWords = successors.get(beginWord);
        for (String successor : successorWords) {
            path.addLast(successor);
            dfs(successor, endWord, successors, path, res);
            path.removeLast();
        }
    }

    private void addToSuccessors(Map<String, Set<String>> successors, boolean forward,
                                 String currentWord, String nextWord) {
        if (!forward) {
            String temp = currentWord;
            currentWord = nextWord;
            nextWord = temp;
        }

        // Java 1.8 以后支持
        successors.computeIfAbsent(currentWord, a -> new HashSet<>());
        successors.get(currentWord).add(nextWord);
    }
}

你可能感兴趣的:(数据结构与算法,LeetCode)