时间复杂度为O(nlogk)的K路归并排序C/C++实现

题目

假定有k个有序数组,每个数组中含有n个元素,您的任务是将它们合并为单独的一个有序数组,该数组共有kn个元素。设计和实现 一个有效的分治算法解决k-路合并操作问题,并分析时间复杂度。

算法思想

采用分治法归并排序,归并两个有序数组时间复杂度为O(n),将K个有序数组分治归并时间复杂度为O(logk),算法整体时间复杂度为O(nlogk),程序里用到了vector向量容器。

#include 
#include 
using namespace std;
vector mergeTowArrays(vectorA,vectorB)
{
	vectortemp;
	temp.resize(A.size() + B.size());
	int index = 0, j = 0, i = 0;
	while (i < A.size() && j < B.size())
	{
		if (A[i] < B[j])
			temp[index++] = A[i++];
		else
			temp[index++] = B[j++];
	}
		while (i < A.size())
			temp[index++] = A[i++];
		while (j < B.size())
			temp[index++] = B[j++];
		return temp;
}
vector kMergeSort(vector>A, int start, int end)
{
	if (start >= end)
		return A[start];
	int mid = start + (end - start) / 2;
	vectorLeft = kMergeSort(A, start, mid);
	vectorRight = kMergeSort(A, mid + 1, end);
	return mergeTowArrays(Left, Right);
}
vector mergeSortArrays(vector >A)
{
	vectortemp;
	if (A.empty() || A.size() == 0 || A[0].size() == 0)
		return temp;
	temp = kMergeSort(A, 0, A.size() - 1);
	return temp;
}
int main(void)
{
	int k,n;
	cin >> k >> n;
	vector>A(k);
	for (int i = 0; i < k; i++)
	{
		A[i].resize(n);
	}
	for (int i = 0; i < A.size(); i++)
	{
		for (int j = 0; j < A[0].size(); j++)
			cin >> A[i][j];
	}
	vectorresult;
	result = mergeSortArrays(A);
	for (int i = 0; i < result.size(); i++)
	{
		cout << result[i] << " ";
	}
	cout << endl;
	system("pause");
	return 0;
}

你可能感兴趣的:(时间复杂度为O(nlogk)的K路归并排序C/C++实现)