排序算法

http://zh.wikipedia.org/wiki/Category:%E6%8E%92%E5%BA%8F%E7%AE%97%E6%B3%95


http://zh.wikipedia.org/wiki/%E6%8E%92%E5%BA%8F%E7%AE%97%E6%B3%95


在计算机科学与数学中,一个排序算法(Sorting algorithm)是一种能将一串数据依照特定排序方式进行排列的一种算法。最常用到的排序方式是数值顺序以及字典顺序。有效的排序算法在一些算法(例如搜索算法与合并算法)中是重要的,如此这些算法才能得到正确解答。排序算法也用在处理文字数据以及产生人类可读的输出结果。基本上,排序算法的输出必须遵守下列两个原则:

  1. 输出结果为递增串行(递增是针对所需的排序顺序而言)
  2. 输出结果是原输入的一种排列、或是重组

虽然排序算法是一个简单的问题,但是从计算机科学发展以来,在此问题上已经有大量的研究。举例而言,冒泡排序在1956年就已经被研究。虽然大部分人认为这是一个已经被解决的问题,有用的新算法仍在不断的被发明。(例子:图书馆排序在2004年被发表)

目录

   [隐藏] 
  • 1 分类
    • 1.1 稳定性
  • 2 排序算法列表
    • 2.1 稳定的排序
    • 2.2 不稳定的排序
    • 2.3 不实用的排序
  • 3 平均时间复杂度
  • 4 简要比较
  • 5 参考文献
  • 6 外部链接

分类[编辑]

在计算机科学所使用的排序算法通常被分类为:

  • 计算的时间复杂度(最差、平均、和最好性能),依据列表(list)的大小(n)。一般而言,好的性能是O(n log n),且坏的性能是O(n2)。对于一个排序理想的性能是O(n)。仅使用一个抽象关键比较运算的排序算法总平均上总是至少需要O(n log n)。
  • 存储器使用量(以及其他电脑资源的使用)
  • 稳定性:稳定排序算法会让原本有相等键值的纪录维持相对次序。也就是如果一个排序算法是稳定的,当有两个相等键值的纪录RS,且在原本的列表中R出现在S之前,在排序过的列表中R也将会是在S之前。
  • 依据排序的方法:插入、交换、选择、合并等等。

稳定性[编辑]

当相等的元素是无法分辨的,比如像是整数,稳定性并不是一个问题。然而,假设以下的数对将要以他们的第一个数字来排序。

(4, 1)  (3, 1)  (3, 7)(5, 6)

在这个状况下,有可能产生两种不同的结果,一个是让相等键值的纪录维持相对的次序,而另外一个则没有:

(3, 1)  (3, 7)  (4, 1)  (5, 6)  (維持次序)
(3, 7)  (3, 1)  (4, 1)  (5, 6)  (次序被改變)

不稳定排序算法可能会在相等的键值中改变纪录的相对次序,但是稳定排序算法从来不会如此。不稳定排序算法可以被特别地实作为稳定。作这件事情的一个方式是人工扩充键值的比较,如此在其他方面相同键值的两个对象间之比较,(比如上面的比较中加入第二个标准:第二个键值的大小)就会被决定使用在原先数据次序中的条目,当作一个同分决赛。然而,要记住这种次序通常牵涉到额外的空间负担。

排序算法列表[编辑]

在这个表格中,n是要被排序的纪录数量以及k是不同键值的数量。

稳定的排序[编辑]

  • 冒泡排序(bubble sort)— O(n2)
  • 鸡尾酒排序(cocktail sort)—O(n2)
  • 插入排序(insertion sort)—O(n2)
  • 桶排序(bucket sort)—O(n);需要O(k)额外空间
  • 计数排序(counting sort)—O(n+k);需要O(n+k)额外空间
  • 归并排序(merge sort)—O(n log n);需要O(n)额外空间
  • 原地归并排序— O(n2)
  • 二叉排序树排序(binary tree sort)— O(n log n)期望时间; O(n2)最坏时间;需要O(n)额外空间
  • 鸽巢排序(pigeonhole sort)—O(n+k);需要O(k)额外空间
  • 基数排序(radix sort)—O(n·k);需要O(n)额外空间
  • 侏儒排序(gnome sort)— O(n2)
  • 图书馆排序(library sort)— 时间复杂度通常是O(n log n),需要(1+ε)n额外空间

不稳定的排序[编辑]

  • 选择排序(selection sort)—O(n2)
  • 希尔排序(shell sort)—O(n log2 n)如果使用最佳的现在版本
  • 梳排序— O(n log n)
  • 堆排序(heap sort)—O(n log n)
  • 平滑排序(smooth sort)— O(n log n)
  • 快速排序(quick sort)—O(n log n)期望时间, O(n2)最坏情况;对于大的、乱数列表一般相信是最快的已知排序
  • 内省排序(introsort)—O(n log n)
  • 耐心排序(patience sort)—O(n log n + k)最坏情况时间,需要额外的O(n + k)空间,也需要找到最长的递增子串行(longest increasing subsequence)

不实用的排序[编辑]

  • Bogo排序— O(n × n!),最坏的情况下期望时间为无穷。
  • Stupid排序—O(n3);递归版本需要O(n2)额外存储器
  • 珠排序(bead sort)— O(n) or O(√n),但需要特别的硬件
  • 煎饼排序—O(n),但需要特别的硬件
  • 臭皮匠排序(stooge sort)算法简单,但需要约n^2.7的时间

平均时间复杂度[编辑]

平均时间复杂度由高到低为:

  • 冒泡排序O(n2)
  • 选择排序O(n2)
  • 插入排序O(n2)
  • 希尔排序O(n1.25)
  • 堆排序O(n log n)
  • 归并排序O(n log n)
  • 快速排序O(n log n)
  • 基数排序O(n)

说明:虽然完全逆序的情况下,快速排序会降到选择排序的速度,不过从概率角度来说(参考信息学理论,和概率学),不对算法做编程上优化时,快速排序的平均速度比堆排序要快一些。

简要比较[编辑]

名称 数据对象 稳定性 时间复杂度 空间复杂度 描述
平均 最坏
冒泡排序 数组 是 O(n^2) O(1) (无序区,有序区)。从无序区通过交换找出最大元素放到有序区前端。
选择排序 数组 否 O(n^2) O(1) (有序区,无序区)。在无序区里找一个最小的元素跟在有序区的后面。对数组:比较得多,换得少。
链表 是
插入排序 数组、链表 是 O(n^2) O(1) (有序区,无序区)。把无序区的第一个元素插入到有序区的合适的位置。对数组:比较得少,换得多。
堆排序 数组 否 O(nlogn) O(1) (最大堆,有序区)。从堆顶把根卸出来放在有序区之前,再恢复堆。
归并排序 数组、链表 是 O(nlogn) O(n) +O(logn),如果不是从下到上 把数据分为两段,从两段中逐个选最小的元素移入新数据段的末尾。可从上到下或从下到上进行。
快速排序 数组 否 O(nlogn) O(n^2) O(logn) ,O(n) (小数,枢纽元,大数)。
希尔排序 数组 否 O(nlog^2n) O(n^2) O(logn) ,O(n) 每一轮按照事先决定的间隔进行插入排序,间隔会依次缩小,最后一次一定要是1。
   
计数排序 数组、链表 是 O(n) O(n+m) 统计小于等于该元素值的元素的个数i,于是该元素就放在目标数组的索引i位(i≥0)。
桶排序 数组、链表 是 O(n) O(m) 将值为i的元素放入i号桶,最后依次把桶里的元素倒出来。
基数排序 数组、链表 是 O(k*n),最坏:O(n^2)   一种多关键字的排序算法,可用桶排序实现。
  • 均按从小到大排列
  • k代表数值中的"数位"个数
  • n代表数据规模
  • m代表数据的最大值减最小值

参考文献[编辑]

外部链接[编辑]

  • 不同排序算法间的比较(英语)
  • 一些排序算法的C及Pascal实现
  • 可视化排序



你可能感兴趣的:(算法)