多目标跟踪MOT踩坑记录

文章目录

    • tracking MOT log
    • 0. 数据集
    • 1.Github
    • 2.资源综述
    • 3.工具包Code
      • MOT 工具包
      • MOT 评估 Python版
    • 4.算法Code
      • deep sort `python`
        • 计算多目标跟踪性能
          • 1 实验:Deep SORT
          • 2 实验:Resnet50 MOT16
          • 3 实验:Resnet50 MOT17
          • 4 实验:计算MOT17的gt的指标
          • 5 实验:Deep SORT(MOT16用gt.txt代替det.txt)
        • 代码笔记
      • iou-tracker `python`
      • rnntracking
    • 5.实验结论
    • 6.附录
      • Deep SORT MOT17 SDP
      • Deep SORT MOT17 SDP mindet0.8

tracking MOT log

综述

一篇论文综述:翻译

https://blog.csdn.net/yuhq3/article/details/78742658

arxiv搜索:

http://www.arxiv-sanity.com/search?q=recurrent+tracking

quora:https://www.quora.com/Why-is-no-visual-tracking-algorithm-using-RNN-LSTM

一个斯坦福大学教授主页-专做行人分析-多目标跟踪等

使用多目标跟踪的数据集测试单目标跟踪算法(DaSiamRPN、ECO等),发现跟踪效果较差。原因是多目标跟踪数据集中多个目标相似度很高、并且存在大量的遮挡和目标消失现象。
DaSiamRPN-ECCV-2018VOT单目标跟踪冠军
ECO-CVPR-2017

0. 数据集

  • MOT:https://motchallenge.net/

多目标跟踪数据集

检测文件标注格式:

, , , , , , , , ,

1, -1, 794.2, 47.5, 71.2, 174.8, 67.5, -1, -1 
1, -1, 164.1, 19.6, 66.5, 163.2, 29.4, -1, -1

标注格式:第一个数字表示帧号,第二个-1表示还没有分配ID,后面四个数字表示左上角x,y,w,h,接着的一个数字表示检测器得到的置信度,最后两个-1对检测文件来说是忽略的.

GroundTrue标注格式

, , , , , , <0/1忽略>, , <>

1, 1, 794.2, 47.5, 71.2, 174.8, 1, 1, 0.8

第7个数字表示这个实体是否被评估,0=忽略,1=评估;第8个数字表示类别

Label ID
Pedestrian 1
Person on vehicle 2
Car 3
Bicycle 4
Motorbike 5
Non motorized vehicle 6
Static person 7
Distractor 8
Occluder 9
Occluder on the ground 10 Occluder full 11
Reflection 12
  • MOT数据集解析、绘制、预处理

按照det.txt将MOT序列图像中的检测框绘制出来:目录=/media/han/E/mWork/datasets/MOT/DataSetParser

按照gt.txt将MOT序列图像的跟踪结果绘制出来:例如目录=/media/han/E/mWork/datasets/MOT/DataSetParser/MOT17/train/MOT17-02-GT

按照gt.txt去掉忽略的框,绘制跟踪结果:例如目录=/media/han/E/mWork/datasets/MOT/DataSetParser/MOT17/train/MOT17-02-GT_ignore0

  • DukeMTMC : http://vision.cs.duke.edu/DukeMTMC/

杜克大学多相机多目标跟踪项目组

1.Github

  • DeepCC

https://github.com/ergysr/DeepCC 杜克大学项目组,论文里提到了很多技巧,很杂,我虽然代码开源了,但是数据集太大100G以上,有点难训练。

  • MOT竞赛 devkit

https://bitbucket.org/amilan/motchallenge-devkit/src

  • MDP_Tracking 2015年ICCV

https://github.com/yuxng/MDP_Tracking
MDP_Tracking is a online multi-object tracking framework based on Markov Decision Processes (MDPs).

多目标跟踪 MDP Tracking 代码配置与运行

  • ICCV 2015论文代码开源

http://rehg.org/mht/

2.资源综述

  • 多目标跟踪论文清单 http://perception.yale.edu/Brian/refGuides/MOT.html

  • 相关知识点

评价指标:

多目标跟踪竞赛结果摘要:Multiple Object Tracking Challenge 2017 Results

 IDF1  IDP  IDR| Rcll  Prcn   FAR|   GT  MT   PT   ML|    FP    FN   IDs    FM|  MOTA  MOTP MOTAL 
% metrics contains the following
% [1]   recall	- percentage of detected targets
% [2]   precision	- percentage of correctly detected targets
% [3]   FAR		- number of false alarms per frame
% [4]   GT        - number of ground truth trajectories
% [5-7] MT, PT, ML	- number of mostly tracked, partially tracked and mostly lost trajectories
% [8]   falsepositives- number of false positives (FP)
% [9]   missed        - number of missed targets (FN)
% [10]  idswitches	- number of id switches     (IDs)
% [11]  FRA       - number of fragmentations
% [12]  MOTA	- Multi-object tracking accuracy in [0,100]
% [13]  MOTP	- Multi-object tracking precision in [0,100] (3D) / [td,100] (2D)
% [14]  MOTAL	- Multi-object tracking accuracy in [0,100] with log10(idswitches)

ICCV 2015 Multiple Hypothesis Tracking Revisited 阅读笔记

ECCV2018论文:Multi-object Tracking with Neural Gating Using Bilinear LSTM

作者Fuxin Li主页 没有开源代码,比清楚具体训练细节

3.工具包Code

MOT 工具包

https://bitbucket.org/amilan/motchallenge-devkit/

例子:

% 输入序列list,GT路径,自己的算法跟踪结果路径,评估集名称
benchmarkGtDir = '/media/han/E/mWork/mCode/tracking-mot/MOT16/train/';
[allMets, metsBenchmark] = evaluateTracking('c5-train.txt', '/media/han/E/mWork/mCode/tracking-mot/deep_sort/results/', benchmarkGtDir, 'MOT16');

没有可视化的程序,可视化的程序可以在/media/han/E/mWork/mCode/tracking-mot/MDP_Tracking/show_groundtruth.m,我把这个可视化脚本和其依赖函数提取出来,放在了

/media/han/E/mWork/mCode/tracking-mot/show_MOT_groundTrue.m

Deep SORT算法代码中还有一个可视化工具,Python写的脚本:/media/han/E/mWork/mCode/tracking-mot/deep_sort/show_results.py

  • MOT评估指标

注意对于MOT16、MOT17,devkit评估时会进行一些预处理

MOT 评估 Python版

https://github.com/cheind/py-motmetrics

运行速度非常慢,可能是我没有开加速优化,但是相对来说比MATLAB工具包难用.

4.算法Code

deep sort python

Simple Online and Realtime Tracking with a Deep Association Metric
[2017 IEEE International Conference on Image Processing (ICIP)]

https://github.com/nwojke/deep_sort

主要是用CNN提取特征,转换成了128维度的特征向量,在跟踪过程中使用了卡尔曼滤波和两种损失:IOU损失和特征向量余弦损失.

代码中没有使用神经网络检测特征,而是预先提取了特征保存在文件中,代码运行过程中加载文件中的128维度特征向量,然后进行跟踪匹配.

https://github.com/nwojke/cosine_metric_learning 是作者关联的另一个相关的repo,包含了如何训练特征向量.

计算多目标跟踪性能

1 实验:Deep SORT

论文中:MOTA 61.4

自己计算:MOTA 60.3

%/media/han/E/mWork/mCode/tracking-mot/amilan-motchallenge-devkit/demo_evalMOT16.m
benchmarkGtDir = '/media/han/E/mWork/datasets/MOT/MOT16/train/';
[allMets, metsBenchmark] = evaluateTracking('c5-train.txt', '/media/han/E/mWork/mCode/tracking-mot/deep_sort/results/', benchmarkGtDir, 'MOT16');

以下是Deep SORT代码中的模型

 %Deep Sort
 % 这是和论文作者使用的检测器一致,都是一篇论文POI提供的检测器
 %********************* Your MOT16 Results *********************
 IDF1  IDP  IDR| Rcll  Prcn   FAR|   GT  MT   PT   ML|    FP    FN   IDs    FM|  MOTA  MOTP MOTAL 
 64.7 76.9 55.8| 66.7  91.9  1.22|  517 176  254   87|  6492 36747   586  1168|  60.3  81.7  60.8 

这是使用Deep SORT从MOT16原始检测文件中提取特征进行多目标跟踪的效果

 %% Deep Sort
 % by MOT16 original detection
 %********************* Your MOT16 Results *********************
 IDF1  IDP  IDR| Rcll  Prcn   FAR|   GT  MT   PT   ML|    FP    FN   IDs    FM|  MOTA  MOTP MOTAL 
 37.6 46.0 31.8| 43.9  63.4  5.26|  517  65  232  220| 27964 61905   729  1680|  17.9  76.9  18.6 

以下是使用Deep SORT从MOT17原始检测文件中提取特征进行多目标跟踪的效果

 %% Deep Sort
 % by MOT17 SDP original detection
 %********************* Your MOT17 Results *********************
 IDF1  IDP  IDR| Rcll  Prcn   FAR|   GT  MT   PT   ML|    FP    FN   IDs    FM|  MOTA  MOTP MOTAL 
 64.4 78.1 54.7| 67.7  96.7  0.49|  546 186  248  112|  2619 36248   619  1405|  64.8  84.6  65.4 
 %% Deep Sort
 % by MOT17 DPM+FRCNN+SDP original detection
 %********************* Your MOT17 Results *********************
 IDF1  IDP  IDR| Rcll  Prcn   FAR|   GT  MT   PT   ML|    FP    FN   IDs    FM|  MOTA  MOTP MOTAL 
 52.3 66.6 43.0| 54.6  84.6  2.11| 1638 357  764  517| 33615152859  1827  4049|  44.1  83.2  44.6 
2 实验:Resnet50 MOT16

尝试:看了几篇行人重识别的论文,发现一个较好的baseline是直接用Resnet50+softmax分类来训练特征提取,我现在正在尝试将其他方法提取的特征方法替换掉deepsort中的特征提取过程,看看多目标跟踪指标有没有较大提升。

 %resnet50 Re-ID baseline
 %********************* Your MOT16 Results *********************
 IDF1  IDP  IDR| Rcll  Prcn   FAR|   GT  MT   PT   ML|    FP    FN   IDs    FM|  MOTA  MOTP MOTAL 
 31.9 37.8 27.6| 44.8  61.4  5.86|  517  68  243  206| 31142 60902  1172  1946|  15.6  76.6  16.6 

上面的表中,MOTA非常低,跟Deep SORT的结果相差很大。但是我突然意识到,Deep SORT的结果并不是基于MOT challenge的官方检测的,是基于POI论文提出的检测框,因此虚假框比较少。

3 实验:Resnet50 MOT17

紧接着,试验在MOT17上的MOTA结果:

%% Re-ID baseline resnet50
% MOT17 DPM+FRCNN+SDP平均,MOTchallenge排行榜也是类似的综合成绩
%********************* Your MOT17 Results *********************
IDF1  IDP  IDR| Rcll  Prcn   FAR|   GT  MT   PT   ML|    FP    FN   IDs    FM|  MOTA  MOTP MOTAL 
46.9 58.6 39.1| 55.3  82.9  2.40| 1638 383  768  487| 38351150518  2635  4587|  43.2  83.0  43.9 

使用更好的检测器,可以得到更好的跟踪效果,这是显而易见的。MOT17包括DPM、FRCNN、SDP三种检测器得到的检测bboxs,这三种检测器得到的跟踪指标MOTA有较大差别。

3.1 DPM 效果

 %% Re-ID baseline resnet50
 % MOT17 DPM
 ********************* Your MOT17 Results *********************
 IDF1  IDP  IDR| Rcll  Prcn   FAR|   GT  MT   PT   ML|    FP    FN   IDs    FM|  MOTA  MOTP MOTAL 
 32.5 38.9 27.9| 44.2  61.7  5.80|  546  64  251  231| 30841 62676  1171  1964|  15.7  76.6  16.7 

3.2 FRCNN 效果

 %% Re-ID baseline resnet50
 % MOT17 FRCNN
 %********************* Your MOT17 Results *********************
 IDF1  IDP  IDR| Rcll  Prcn   FAR|   GT  MT   PT   ML|    FP    FN   IDs    FM|  MOTA  MOTP MOTAL 
 49.5 68.3 38.8| 53.2  93.6  0.77|  546 120  273  153|  4103 52522   638  1030|  49.0  86.5  49.6 

3.3 SDP 效果

 %% Re-ID baseline resnet50
 % MOT17 SDP
 ********************* Your MOT17 Results *********************
 IDF1  IDP  IDR| Rcll  Prcn   FAR|   GT  MT   PT   ML|    FP    FN   IDs    FM|  MOTA  MOTP MOTAL 
 58.8 70.5 50.5| 68.5  95.8  0.64|  546 199  244  103|  3407 35320   826  1593|  64.8  84.4  65.5 

从3.1、3.2、3.3可以很容易看出来,即使是相同的特征提取技术,如果检测器的精度高,那么多目标跟踪效果就越好。

4 实验:计算MOT17的gt的指标
Sequences: 
    'MOT17-02-SDP'
    'MOT17-04-SDP'
    'MOT17-05-SDP'
    'MOT17-09-SDP'
    'MOT17-10-SDP'
    'MOT17-11-SDP'
    'MOT17-13-SDP'

	... MOT17-02-SDP
Preprocessing (cleaning) MOT17-02-SDP...
......
Removing 8020 boxes from solution...
MOT17-02-SDP
 IDF1  IDP  IDR| Rcll  Prcn   FAR|   GT  MT   PT   ML|    FP    FN   IDs    FM|  MOTA  MOTP MOTAL 
 91.6 84.5 100.0|100.0  84.5  5.67|   62  62    0    0|  3402     0     0     0|  81.7 100.0  81.7 

	... MOT17-04-SDP
Preprocessing (cleaning) MOT17-04-SDP...
..........
Removing 4798 boxes from solution...
MOT17-04-SDP
 IDF1  IDP  IDR| Rcll  Prcn   FAR|   GT  MT   PT   ML|    FP    FN   IDs    FM|  MOTA  MOTP MOTAL 
 63.1 46.1 100.0|100.0  46.1 53.00|   83  83    0    0| 55650     0     0     0| -17.0 100.0 -17.0 

	... MOT17-05-SDP
Preprocessing (cleaning) MOT17-05-SDP...
........
Removing 339 boxes from solution...
MOT17-05-SDP
 IDF1  IDP  IDR| Rcll  Prcn   FAR|   GT  MT   PT   ML|    FP    FN   IDs    FM|  MOTA  MOTP MOTAL 
 94.8 90.1 100.0|100.0  90.1  0.90|  133 133    0    0|   757     0     0     0|  89.1 100.0  89.1 

	... MOT17-09-SDP
Preprocessing (cleaning) MOT17-09-SDP...
.....
Removing 4036 boxes from solution...
MOT17-09-SDP
 IDF1  IDP  IDR| Rcll  Prcn   FAR|   GT  MT   PT   ML|    FP    FN   IDs    FM|  MOTA  MOTP MOTAL 
 91.0 83.5 100.0|100.0  83.5  2.00|   26  26    0    0|  1050     0     0     0|  80.3 100.0  80.3 

	... MOT17-10-SDP
Preprocessing (cleaning) MOT17-10-SDP...
......
Removing 1846 boxes from solution...
MOT17-10-SDP
 IDF1  IDP  IDR| Rcll  Prcn   FAR|   GT  MT   PT   ML|    FP    FN   IDs    FM|  MOTA  MOTP MOTAL 
 90.3 82.3 100.0|100.0  82.3  4.23|   57  57    0    0|  2765     0     0     0|  78.5 100.0  78.5 

	... MOT17-11-SDP
Preprocessing (cleaning) MOT17-11-SDP...
.........
Removing 585 boxes from solution...
MOT17-11-SDP
 IDF1  IDP  IDR| Rcll  Prcn   FAR|   GT  MT   PT   ML|    FP    FN   IDs    FM|  MOTA  MOTP MOTAL 
 96.9 94.1 100.0|100.0  94.1  0.66|   75  75    0    0|   596     0     0     0|  93.7 100.0  93.7 

	... MOT17-13-SDP
Preprocessing (cleaning) MOT17-13-SDP...
.......
Removing 126 boxes from solution...
MOT17-13-SDP
 IDF1  IDP  IDR| Rcll  Prcn   FAR|   GT  MT   PT   ML|    FP    FN   IDs    FM|  MOTA  MOTP MOTAL 
 73.4 58.0 100.0|100.0  58.0 11.25|  110 110    0    0|  8434     0     0     0|  27.6 100.0  27.6 


 ********************* Your MOT17 Results *********************
 IDF1  IDP  IDR| Rcll  Prcn   FAR|   GT  MT   PT   ML|    FP    FN   IDs    FM|  MOTA  MOTP MOTAL 
 75.6 60.7 100.0|100.0  60.7 13.67|  546 546    0    0| 72654     0     0     0|  35.3 100.0  35.3 

上面的结果发现,虽然MOTP都是100,ID和FN、FM都是0,但是MOTA仍然不是特别高。为什么会出现这样的情况?实际上,MOT challenge devkit(MATLAB) 在读取gt/gt.txt文件中的数据后,将所有静止的目标全部删除了,然后在和跟踪到的结果数据进行对比计算,也就是说,对检测数据并没有删除其中的静止bbox。如果我们使用完全删除静止框的gt.txt来作为跟踪结果,那么会得到:

 IDF1  IDP  IDR| Rcll  Prcn   FAR|   GT  MT   PT   ML|    FP    FN   IDs    FM|  MOTA  MOTP MOTAL 
100.0 100.0 100.0|100.0 100.0  0.00|   62  62    0    0|     0     0     0     0| 100.0 100.0 100.0 

启发:如果多目标跟踪算法对静止目标有强的抑制作用(检测出更少的静止目标轨迹),那么MOTA指标应该会增大。

5 实验:Deep SORT(MOT16用gt.txt代替det.txt)

MOT16用gt.txt代替det.txt,为什么做这样的实验,因为gt.txt中的框有很多在det.txt中并没有,由于Deep SORT并没有检测环节,所以这些没有检测到的框将限制MOTA指标值。

Sequences: 
    'MOT16-02'
    'MOT16-04'
    'MOT16-05'
    'MOT16-09'
    'MOT16-10'
    'MOT16-11'
    'MOT16-13'

	... MOT16-02
Preprocessing (cleaning) MOT16-02...
......
Removing 0 boxes from solution...
MOT16-02
 IDF1  IDP  IDR| Rcll  Prcn   FAR|   GT  MT   PT   ML|    FP    FN   IDs    FM|  MOTA  MOTP MOTAL 
 97.0 97.2 96.8| 99.4  99.7  0.07|   54  53    1    0|    45   115    14     9|  99.0  96.3  99.1 

	... MOT16-04
Preprocessing (cleaning) MOT16-04...
..........
Removing 3 boxes from solution...
MOT16-04
 IDF1  IDP  IDR| Rcll  Prcn   FAR|   GT  MT   PT   ML|    FP    FN   IDs    FM|  MOTA  MOTP MOTAL 
 99.8 99.9 99.7| 99.7  99.9  0.03|   83  83    0    0|    28   166     0     0|  99.6  97.4  99.6 

	... MOT16-05
Preprocessing (cleaning) MOT16-05...
........
Removing 0 boxes from solution...
MOT16-05
 IDF1  IDP  IDR| Rcll  Prcn   FAR|   GT  MT   PT   ML|    FP    FN   IDs    FM|  MOTA  MOTP MOTAL 
 87.3 87.9 86.7| 96.5  97.9  0.17|  125 109   16    0|   142   242    43    15|  93.7  91.3  94.3 

	... MOT16-09
Preprocessing (cleaning) MOT16-09...
.....
Removing 0 boxes from solution...
MOT16-09
 IDF1  IDP  IDR| Rcll  Prcn   FAR|   GT  MT   PT   ML|    FP    FN   IDs    FM|  MOTA  MOTP MOTAL 
 85.1 85.3 84.8| 98.8  99.5  0.05|   25  25    0    0|    26    62    11     4|  98.1  94.4  98.3 

	... MOT16-10
Preprocessing (cleaning) MOT16-10...
......
Removing 0 boxes from solution...
MOT16-10
 IDF1  IDP  IDR| Rcll  Prcn   FAR|   GT  MT   PT   ML|    FP    FN   IDs    FM|  MOTA  MOTP MOTAL 
 91.4 91.7 91.1| 98.9  99.6  0.08|   54  52    2    0|    54   139    15     9|  98.3  92.8  98.4 

	... MOT16-11
Preprocessing (cleaning) MOT16-11...
.........
Removing 0 boxes from solution...
MOT16-11
 IDF1  IDP  IDR| Rcll  Prcn   FAR|   GT  MT   PT   ML|    FP    FN   IDs    FM|  MOTA  MOTP MOTAL 
 98.7 99.2 98.3| 98.5  99.4  0.06|   69  66    3    0|    52   138     1     1|  97.9  94.8  97.9 

	... MOT16-13
Preprocessing (cleaning) MOT16-13...
.......
Removing 0 boxes from solution...
MOT16-13
 IDF1  IDP  IDR| Rcll  Prcn   FAR|   GT  MT   PT   ML|    FP    FN   IDs    FM|  MOTA  MOTP MOTAL 
 87.9 88.6 87.2| 97.4  99.0  0.15|  107 101    4    2|   110   299     9     8|  96.3  91.5  96.4 


 ********************* Your MOT16 Results *********************
 IDF1  IDP  IDR| Rcll  Prcn   FAR|   GT  MT   PT   ML|    FP    FN   IDs    FM|  MOTA  MOTP MOTAL 
 95.6 95.9 95.3| 98.9  99.6  0.09|  517 489   26    2|   457  1161    93    46|  98.5  95.4  98.5 

以上的实验结果很惊人,MOTA得到98.5,这也就意味着,如果输入的检测框和GT中的检测框一致,将会极大的提高MOTA分数。那么是否意味着,现有的方法在轨迹关联方面已经够用了,想要在官方给的det.txt基础上继续提高MOTA,只能想办法减少det.txt中和gt.txt中框不一致的现象。

思考:为什么MOTA不等于100,原因可能是:Deep SORT关联候选框出现错误;Deep SORT需要连续框出现3帧。

代码笔记

deep sort代码中有nms预处理过程,但是其nms不是计算IOU,而是overlay,并且作者设置nms阈值为1.0,当大于1.0时抑制。

实际上,这个nms无法发挥作用,overlay>0.1是几乎不会出现的。

iou-tracker python

https://github.com/bochinski/iou-tracker

MOT17 SDP数据结果

Sequences: 
    'MOT17-02-SDP'
    'MOT17-04-SDP'
    'MOT17-05-SDP'
    'MOT17-09-SDP'
    'MOT17-10-SDP'
    'MOT17-11-SDP'
    'MOT17-13-SDP'

	... MOT17-02-SDP
Preprocessing (cleaning) MOT17-02-SDP...
......
Removing 1774 boxes from solution...
MOT17-02-SDP
 IDF1  IDP  IDR| Rcll  Prcn   FAR|   GT  MT   PT   ML|    FP    FN   IDs    FM|  MOTA  MOTP MOTAL 
 36.8 55.3 27.6| 46.4  93.2  1.05|   62   7   38   17|   628  9954   439   499|  40.7  80.5  43.0 

	... MOT17-04-SDP
Preprocessing (cleaning) MOT17-04-SDP...
..........
Removing 1007 boxes from solution...
MOT17-04-SDP
 IDF1  IDP  IDR| Rcll  Prcn   FAR|   GT  MT   PT   ML|    FP    FN   IDs    FM|  MOTA  MOTP MOTAL 
 60.9 70.8 53.4| 75.1  99.7  0.10|   83  41   29   13|   102 11824   487   542|  73.9  84.9  74.9 

	... MOT17-05-SDP
Preprocessing (cleaning) MOT17-05-SDP...
........
Removing 40 boxes from solution...
MOT17-05-SDP
 IDF1  IDP  IDR| Rcll  Prcn   FAR|   GT  MT   PT   ML|    FP    FN   IDs    FM|  MOTA  MOTP MOTAL 
 54.5 68.6 45.3| 63.5  96.4  0.20|  133  35   79   19|   166  2522   193   182|  58.3  84.1  61.1 

	... MOT17-09-SDP
Preprocessing (cleaning) MOT17-09-SDP...
.....
Removing 80 boxes from solution...
MOT17-09-SDP
 IDF1  IDP  IDR| Rcll  Prcn   FAR|   GT  MT   PT   ML|    FP    FN   IDs    FM|  MOTA  MOTP MOTAL 
 45.5 57.9 37.5| 64.2  99.1  0.06|   26  11   14    1|    30  1907   106    98|  61.6  85.4  63.6 

	... MOT17-10-SDP
Preprocessing (cleaning) MOT17-10-SDP...
......
Removing 110 boxes from solution...
MOT17-10-SDP
 IDF1  IDP  IDR| Rcll  Prcn   FAR|   GT  MT   PT   ML|    FP    FN   IDs    FM|  MOTA  MOTP MOTAL 
 47.5 54.4 42.1| 72.9  94.2  0.87|   57  29   25    3|   571  3484   363   348|  65.6  79.7  68.4 

	... MOT17-11-SDP
Preprocessing (cleaning) MOT17-11-SDP...
.........
Removing 148 boxes from solution...
MOT17-11-SDP
 IDF1  IDP  IDR| Rcll  Prcn   FAR|   GT  MT   PT   ML|    FP    FN   IDs    FM|  MOTA  MOTP MOTAL 
 56.5 65.4 49.8| 73.3  96.1  0.31|   75  29   32   14|   280  2523   163   149|  68.6  85.1  70.3 

	... MOT17-13-SDP
Preprocessing (cleaning) MOT17-13-SDP...
.......
Removing 0 boxes from solution...
MOT17-13-SDP
 IDF1  IDP  IDR| Rcll  Prcn   FAR|   GT  MT   PT   ML|    FP    FN   IDs    FM|  MOTA  MOTP MOTAL 
 52.2 67.8 42.5| 56.4  90.0  0.98|  110  44   24   42|   732  5071   307   247|  47.5  78.9  50.1 


 ********************* Your MOT17 Results *********************
 IDF1  IDP  IDR| Rcll  Prcn   FAR|   GT  MT   PT   ML|    FP    FN   IDs    FM|  MOTA  MOTP MOTAL 
 53.4 65.4 45.1| 66.8  96.8  0.47|  546 196  241  109|  2509 37285  2058  2065|  62.7  83.2  64.6 

rnntracking

/media/han/E/mWork/mCode/tracking-mot/amilan-rnntracking

http://torch.ch/docs/getting-started.html

安装过程中出现torch>=7.0依赖问题,参考https://github.com/deepmind/torch-hdf5/issues/95#issuecomment-442821334

5.实验结论

MOT评估方法中有一些细节:

(1)MOT16/17会对gt.txt中的数据中的忽略框进行删除(方法是:直接判断gt.txt中每行的第7位标志位);

(2)也会对跟踪结果数据中的数据进行清洗,并自动生成在clear文件夹下;但是!仍然有很多框没有清洗完,导致直接使用gt.txt数据测试,MOTA并不是100,参见实验4.

图像对比

MOT17-02-GT-ignore0

MOT17-02-SDP-det

6.附录

Deep SORT MOT17 SDP

Sequences: 
    'MOT17-02-SDP'
    'MOT17-04-SDP'
    'MOT17-05-SDP'
    'MOT17-09-SDP'
    'MOT17-10-SDP'
    'MOT17-11-SDP'
    'MOT17-13-SDP'

	... MOT17-02-SDP
Preprocessing (cleaning) MOT17-02-SDP...
......
Removing 1901 boxes from solution...
MOT17-02-SDP
 IDF1  IDP  IDR| Rcll  Prcn   FAR|   GT  MT   PT   ML|    FP    FN   IDs    FM|  MOTA  MOTP MOTAL 
 43.3 63.3 32.9| 48.4  93.1  1.11|   62   9   37   16|   669  9591   162   366|  43.9  81.4  44.8 

	... MOT17-04-SDP
Preprocessing (cleaning) MOT17-04-SDP...
..........
Removing 1015 boxes from solution...
MOT17-04-SDP
 IDF1  IDP  IDR| Rcll  Prcn   FAR|   GT  MT   PT   ML|    FP    FN   IDs    FM|  MOTA  MOTP MOTAL 
 73.2 84.4 64.6| 76.2  99.6  0.13|   83  42   28   13|   141 11318   109   343|  75.7  86.7  75.9 

	... MOT17-05-SDP
Preprocessing (cleaning) MOT17-05-SDP...
........
Removing 38 boxes from solution...
MOT17-05-SDP
 IDF1  IDP  IDR| Rcll  Prcn   FAR|   GT  MT   PT   ML|    FP    FN   IDs    FM|  MOTA  MOTP MOTAL 
 64.9 81.7 53.8| 63.1  95.7  0.23|  133  21   84   28|   194  2555    76   134|  59.2  84.0  60.2 

	... MOT17-09-SDP
Preprocessing (cleaning) MOT17-09-SDP...
.....
Removing 85 boxes from solution...
MOT17-09-SDP
 IDF1  IDP  IDR| Rcll  Prcn   FAR|   GT  MT   PT   ML|    FP    FN   IDs    FM|  MOTA  MOTP MOTAL 
 56.7 71.4 47.1| 65.5  99.3  0.05|   26   9   16    1|    25  1838    32    57|  64.4  86.4  65.0 

	... MOT17-10-SDP
Preprocessing (cleaning) MOT17-10-SDP...
......
Removing 149 boxes from solution...
MOT17-10-SDP
 IDF1  IDP  IDR| Rcll  Prcn   FAR|   GT  MT   PT   ML|    FP    FN   IDs    FM|  MOTA  MOTP MOTAL 
 63.1 71.9 56.2| 73.2  93.6  0.98|   57  29   25    3|   644  3443   102   255|  67.4  80.7  68.2 

	... MOT17-11-SDP
Preprocessing (cleaning) MOT17-11-SDP...
.........
Removing 148 boxes from solution...
MOT17-11-SDP
 IDF1  IDP  IDR| Rcll  Prcn   FAR|   GT  MT   PT   ML|    FP    FN   IDs    FM|  MOTA  MOTP MOTAL 
 64.4 74.3 56.9| 73.8  96.4  0.29|   75  30   33   12|   263  2471    63   101|  70.4  86.3  71.0 

	... MOT17-13-SDP
Preprocessing (cleaning) MOT17-13-SDP...
.......
Removing 0 boxes from solution...
MOT17-13-SDP
 IDF1  IDP  IDR| Rcll  Prcn   FAR|   GT  MT   PT   ML|    FP    FN   IDs    FM|  MOTA  MOTP MOTAL 
 61.7 80.1 50.2| 56.8  90.6  0.91|  110  46   25   39|   683  5032    75   149|  50.3  79.9  50.9 


 ********************* Your MOT17 Results *********************
 IDF1  IDP  IDR| Rcll  Prcn   FAR|   GT  MT   PT   ML|    FP    FN   IDs    FM|  MOTA  MOTP MOTAL 
 64.4 78.1 54.7| 67.7  96.7  0.49|  546 186  248  112|  2619 36248   619  1405|  64.8  84.6  65.4 

Deep SORT MOT17 SDP mindet0.8

Sequences: 
    'MOT17-02-SDP'
    'MOT17-04-SDP'
    'MOT17-05-SDP'
    'MOT17-09-SDP'
    'MOT17-10-SDP'
    'MOT17-11-SDP'
    'MOT17-13-SDP'

	... MOT17-02-SDP
Preprocessing (cleaning) MOT17-02-SDP...
......
Removing 1650 boxes from solution...
MOT17-02-SDP
 IDF1  IDP  IDR| Rcll  Prcn   FAR|   GT  MT   PT   ML|    FP    FN   IDs    FM|  MOTA  MOTP MOTAL 
 43.8 67.5 32.5| 46.2  96.2  0.57|   62   9   35   18|   342  9989   127   298|  43.7  82.0  44.4 

	... MOT17-04-SDP
Preprocessing (cleaning) MOT17-04-SDP...
..........
Removing 1004 boxes from solution...
MOT17-04-SDP
 IDF1  IDP  IDR| Rcll  Prcn   FAR|   GT  MT   PT   ML|    FP    FN   IDs    FM|  MOTA  MOTP MOTAL 
 73.5 86.7 63.8| 73.5  99.8  0.05|   83  37   31   15|    55 12625   129   348|  73.1  86.8  73.3 

	... MOT17-05-SDP
Preprocessing (cleaning) MOT17-05-SDP...
........
Removing 20 boxes from solution...
MOT17-05-SDP
 IDF1  IDP  IDR| Rcll  Prcn   FAR|   GT  MT   PT   ML|    FP    FN   IDs    FM|  MOTA  MOTP MOTAL 
 63.6 83.4 51.4| 60.5  98.1  0.10|  133  18   78   37|    83  2733    56   112|  58.5  84.6  59.3 

	... MOT17-09-SDP
Preprocessing (cleaning) MOT17-09-SDP...
.....
Removing 16 boxes from solution...
MOT17-09-SDP
 IDF1  IDP  IDR| Rcll  Prcn   FAR|   GT  MT   PT   ML|    FP    FN   IDs    FM|  MOTA  MOTP MOTAL 
 57.1 72.8 46.9| 64.2  99.7  0.02|   26   8   16    2|     9  1904    29    55|  63.5  86.7  64.0 

	... MOT17-10-SDP
Preprocessing (cleaning) MOT17-10-SDP...
......
Removing 43 boxes from solution...
MOT17-10-SDP
 IDF1  IDP  IDR| Rcll  Prcn   FAR|   GT  MT   PT   ML|    FP    FN   IDs    FM|  MOTA  MOTP MOTAL 
 63.6 74.8 55.4| 71.1  96.0  0.58|   57  25   29    3|   379  3715    92   244|  67.4  81.1  68.1 

	... MOT17-11-SDP
Preprocessing (cleaning) MOT17-11-SDP...
.........
Removing 125 boxes from solution...
MOT17-11-SDP
 IDF1  IDP  IDR| Rcll  Prcn   FAR|   GT  MT   PT   ML|    FP    FN   IDs    FM|  MOTA  MOTP MOTAL 
 64.7 76.6 56.0| 71.3  97.5  0.19|   75  24   38   13|   174  2711    46   100|  68.9  86.9  69.4 

	... MOT17-13-SDP
Preprocessing (cleaning) MOT17-13-SDP...
.......
Removing 0 boxes from solution...
MOT17-13-SDP
 IDF1  IDP  IDR| Rcll  Prcn   FAR|   GT  MT   PT   ML|    FP    FN   IDs    FM|  MOTA  MOTP MOTAL 
 62.4 87.0 48.6| 52.5  94.0  0.52|  110  39   21   50|   390  5528    31    89|  48.9  81.1  49.2 


 ********************* Your MOT17 Results *********************
 IDF1  IDP  IDR| Rcll  Prcn   FAR|   GT  MT   PT   ML|    FP    FN   IDs    FM|  MOTA  MOTP MOTAL 
 64.7 81.1 53.8| 65.1  98.1  0.27|  546 160  248  138|  1432 39205   510  1246|  63.4  84.9  63.8 

Deep SORT MOT17 DPM+FRCNN+SDP mindet0.8

 ********************* Your MOT17 Results *********************
 IDF1  IDP  IDR| Rcll  Prcn   FAR|   GT  MT   PT   ML|    FP    FN   IDs    FM|  MOTA  MOTP MOTAL 
 51.9 81.4 38.1| 46.0  98.3  0.17| 1638 266  647  725|  2712181970   983  2990|  44.9  85.0  45.2 

Deep SORT MOT17 DPM+FRCNN+SDP mindet0.3

 ********************* Your MOT17 Results *********************
 IDF1  IDP  IDR| Rcll  Prcn   FAR|   GT  MT   PT   ML|    FP    FN   IDs    FM|  MOTA  MOTP MOTAL 
 53.4 78.0 40.6| 50.1  96.1  0.43| 1638 319  696  623|  6886168277  1249  3432|  47.6  84.2  48.0 

你可能感兴趣的:(deep-learning,computer,version,Python,ubuntu)