① Kruskal算法先对路径的权值进行排序
② 再在图中加入这个路径(要求不产生回路)。
关键就是不能形成回路。判断是否为回路的准则是:两个顶点例如(C-E)是否有同一个终点。
关键代码:关键代码是end数组的生成,end数组用来记录每个顶点的终点。(end[ ]也是逐步完善的,一步一步填)
package Kruskal;
/**
* @author pdzz
* @create 2019-11-30 16:07
*/
public class Kruskal {
private int edgeNum;//边的个数
private char[] vertex;//顶点数组
private int[][] matrix;//邻接矩阵
private static final int INF = Integer.MAX_VALUE;
public static void main(String[] args) {
char[] vertexes = {'A','B','C','D','E','F','G'};
int[][] matrix = {
{0,12,INF,INF,INF,16,14},
{12,0,10,INF,INF,7,INF},
{INF,10,0,3,5,6,INF},
{INF,INF,3,0,4,INF,INF},
{INF,INF,5,4,0,2,8},
{16,7,6,INF,2,0,9},
{14,INF,INF,INF,8,9,0},
};
Kruskal kruskal = new Kruskal(vertexes, matrix);
kruskal.kruskal();
}
private int getEnd(int[] ends,int i){
while (ends[i] != 0){
i = ends[i];
}
return i;
}
public void kruskal(){
int index = 0;
int[] ends = new int[edgeNum];
Edata[] ret = new Edata[edgeNum];
Edata[] edges = getEdges();
sortEdges(edges);
//System.out.println("边的集合:" + Arrays.toString(edges));
//遍历边的集合,判断是否形成回路。
for (int i = 0; i < edgeNum; i++) {
int p1 = getPosition(edges[i].start);
int p2 = getPosition(edges[i].end);
//获取p1顶点的终点
int m = getEnd(ends,p1);
//获取p2顶点的最小下标
int n = getEnd(ends,p2);
if (m != n){
ends[m] = n;//加入m,n
ret[index++] = edges[i];
}
}
int sumWeight = 0;
System.out.println("最小生成树为:");
for (int i = 0; i < index; i++) {
System.out.println(ret[i]);
sumWeight += ret[i].weight;
}
System.out.println("路径总长 = " + sumWeight);
}
public Kruskal(char[] vertex,int[][] matrix) {
//初始化顶点数和边的个数
int vlen = vertex.length;
this.vertex = new char[vlen];
//初始化
for (int i = 0;i < vlen;i++){
this.vertex[i] = vertex[i];
}
this.matrix = new int[vlen][vlen];
//传递到kruskal中的全局变量
for (int i = 0; i < vlen; i++) {
for (int j = 0; j < vlen; j++) {
this.matrix[i][j] = matrix[i][j];
}
}
//统计边的条数
for (int i = 0; i < vlen; i++) {
for (int j = i + 1; j < vlen; j++) {
if (this.matrix[i][j] != INF){
edgeNum++;
}
}
}
System.out.println(edgeNum);
for (int i = 0; i < vlen; i++) {
for (int j = 0; j < vlen; j++) {
System.out.printf("%12d", matrix[i][j]);
}
System.out.println();
}
}
private void sortEdges(Edata[] edges){
for (int i = 0; i < edges.length - 1; i++) {
for (int j = 0; j < edges.length - 1 -i; j++) {
if (edges[j].weight > edges[j + 1].weight){
Edata temp = edges[j];
edges[j] = edges[j + 1];
edges[j + 1] = temp;
}
}
}
}
public int getPosition(char ch){
for (int i = 0; i < vertex.length; i++) {
if (vertex[i] == ch){
return i;
}
}
return -1;
}
private Edata[] getEdges(){
int index = 0;
Edata[] edata = new Edata[edgeNum];
for (int i = 0; i < vertex.length; i++) {
for (int j = i + 1; j < vertex.length; j++) {
if (matrix[i][j] != INF){
edata[index++] = new Edata(vertex[i],vertex[j],matrix[i][j]);
}
}
}
return edata;
}
}
class Edata{
char start;
char end;
int weight;
public Edata(char start, char end, int weight) {
this.start = start;
this.end = end;
this.weight = weight;
}
@Override
public String toString() {
return "Edata{" +
"start=" + start +
", end=" + end +
", weight=" + weight +
'}';
}
}
来自尚硅谷韩顺平老师的Java数据结构的视频。