成功解决(wait)KeyError: "The name 'image_tensor:0' refers to a Tensor which does not exist. The operatio
目录
解决问题
全部代码
解决方法
KeyError: "The name 'image_tensor:0' refers to a Tensor which does not exist. The operation, 'image_tensor', does not exist in the graph."
#run_inference_for_single_image(image, graph) #函数实现单张图像的推断
def run_inference_for_single_image(image, graph):
with graph.as_default():
# detection_graph = tf.Graph()
with tf.Session() as sess: #graph=detection_graph
# Get handles to input and output tensors
ops = tf.get_default_graph().get_operations()
all_tensor_names = {output.name for op in ops for output in op.outputs}
tensor_dict = {}
for key in [
'num_detections', 'detection_boxes', 'detection_scores',
'detection_classes', 'detection_masks'
]: #score每个检测结果的confidence、classes每个框所对应的类别、num_detections框检测的个数
tensor_name = key + ':0'
if tensor_name in all_tensor_names:
tensor_dict[key] = detection_graph.get_tensor_by_name(
tensor_name)
if 'detection_masks' in tensor_dict:
# The following processing is only for single image
detection_boxes = tf.squeeze(tensor_dict['detection_boxes'], [0])
detection_masks = tf.squeeze(tensor_dict['detection_masks'], [0])
# Reframe is required to translate mask from box coordinates to image coordinates and fit the image size.
real_num_detection = tf.cast(tensor_dict['num_detections'][0], tf.int32)
detection_boxes = tf.slice(detection_boxes, [0, 0], [real_num_detection, -1]) #boxes变量存放了所有检测框
detection_masks = tf.slice(detection_masks, [0, 0, 0], [real_num_detection, -1, -1])
detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks(
detection_masks, detection_boxes, image.shape[0], image.shape[1])
detection_masks_reframed = tf.cast(
tf.greater(detection_masks_reframed, 0.5), tf.uint8)
# Follow the convention by adding back the batch dimension
tensor_dict['detection_masks'] = tf.expand_dims(
detection_masks_reframed, 0)
print(tf.get_default_graph())
image_tensor = tf.get_default_graph().get_tensor_by_name('image_tensor:0') #image_tensor:0
# Run inference 使用sess.run真正开始计算
output_dict = sess.run(tensor_dict,
feed_dict={image_tensor: np.expand_dims(image, 0)})
# all outputs are float32 numpy arrays, so convert types as appropriate
output_dict['num_detections'] = int(output_dict['num_detections'][0])
output_dict['detection_classes'] = output_dict[
'detection_classes'][0].astype(np.uint8)
output_dict['detection_boxes'] = output_dict['detection_boxes'][0]
output_dict['detection_scores'] = output_dict['detection_scores'][0]
if 'detection_masks' in output_dict:
output_dict['detection_masks'] = output_dict['detection_masks'][0]
return output_dict
#6、for循环实现预测并绘制检测后的图片
for image_path in TEST_IMAGE_PATHS:
image = Image.open(image_path)
# the array based representation of the image will be used later in order to prepare the
# result image with boxes and labels on it.
image_np = load_image_into_numpy_array(image) #将图片草转换为numpy形式
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0) #将图片扩展一个维度,最后进入神经网络的格式应该为[1,?,?,3]
# Actual detection.
output_dict = run_inference_for_single_image(image_np, detection_graph)
# Visualization of the results of a detection.
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
output_dict['detection_boxes'],
output_dict['detection_classes'],
output_dict['detection_scores'],
category_index,
instance_masks=output_dict.get('detection_masks'),
use_normalized_coordinates=True,
line_thickness=8)
plt.figure(figsize=IMAGE_SIZE)
plt.title('TFOD API Official Case Tutorial——Jason Niu')
plt.imshow(image_np)
prediction = tf.nn.softmax(tf.matmul(last,weight)+bias, name="prediction")
y_pred = graph.get_tensor_by_name("Reshape_1:0")
for op in graph.get_operations():
print(op.name)
1、解决方法来自Stackoverflow
外国朋友的解决的方法,其内容比较详细,我就不再抛砖引玉了,欢迎大家留言探讨!
哈哈,最后,博主,成功搞定!
相关文章
KeyError : The tensor variable , Refer to the tensor which does not exists
how to predict with .meta and checkpoint files in tensorflow?