- 冯诺依曼架构和哈佛架构的主要区别?
m0_74824552
面试学习路线阿里巴巴架构微服务云原生
冯诺依曼架构(VonNeumannArchitecture)和哈佛架构(HarvardArchitecture)是两种计算机体系结构,它们在存储器组织、指令处理和数据存取等方面有明显的不同。以下是它们的主要区别:1.存储器结构冯诺依曼架构:在冯诺依曼架构中,程序存储器和数据存储器是共享的,即指令和数据都存储在同一个内存区域(通常是RAM)中。由于指令和数据使用同一条总线来传输,处理器在每次访问内存
- H3CNE-17-DHCP动态主机配置协议
马立杰
数通windowsH3CNE网络
动态主机配置协议DHCP(DynamicHostConfigurationProtocol),来分配IP地址(DNS、Gateway)等网络参数,可以减少管理员工作量,避免用户手动配置网络参数时造成的地址冲突。DHCP应用场景DHCP服务器能够为大量主机分配IP地址,并能够集中管理。(1)DHCP接口地址池配置R2:dhcpenintg0/0/0dhcpselectinterfacedhcpser
- 详解数据库系统概述
凭君语未可
数据库数据库oracle
数据库系统概述1.数据库(Database)1.1定义:1.2特点:1.3举例:2.数据库管理系统(DBMS:DatabaseManagementSystem)2.1定义:2.2DBMS的主要功能:2.3常见的数据库管理系统:2.4工作流程(类比):3.数据库系统(DatabaseSystem)3.1定义:3.2组成:3.3举例:三者的关系举例:以电商系统为例总结(《数据库系统概论》)数据库数据库
- AlphaFold2的思路总结(十五)
xiaofengzihhh
蛋白质结构预测深度学习人工智能神经网络
2021SC@SDUSC这学期的代码分析工作接近尾声了,我想简单总结一下AlphaFold2的总体思路 具体来看,AlphaFold2主要利用多序列比对(MSA),把蛋白质的结构和生物信息整合到了深度学习算法中。它主要包括两个部分:神经网络EvoFormer和结构模块(Structuremodule)。一、EvoFormer 在EvoFormer中,主要是将图网络(Graphnetworks)
- python机器学习
方安乐
pythonpython机器学习人工智能
Python机器学习是当前最为热门的机器学习领域之一,其简洁、易用、高效的特点,让越来越多的开发者开始探索其应用。本文将从以下几个方面介绍Python机器学习的基础知识和实践案例,帮助读者更好地理解和应用机器学习技术。前提Python机器学习的应用领域A.图像识别和计算机视觉B.自然语言处理和文本分析C.数据挖掘和推荐系统深度学习A.神经网络的基本原理B.常用的深度学习框架和算法C.深度学习在图像
- 神经网络|(三)线性回归基础知识
西猫雷婶
神经网络线性回归机器学习
【1】引言前序学习进程中,已经对简单神经元的工作模式有所了解,这种二元分类的工作机制,进一步使用sigmoid()函数进行了平滑表达。相关学习链接为:神经网络|(一)加权平均法,感知机和神经元-CSDN博客神经网络|(二)sigmoid神经元函数-CSDN博客实际上,上述表达模型的一个基本原则是:元素和对应的权重,线性相乘后再和阈值开关作对比,元素的综合影响在本质上是一个线性函数,类似于y=wx+
- 基于Python的自然语言处理系列(2):Word2Vec(负采样)
会飞的Anthony
自然语言处理人工智能信息系统自然语言处理word2vec人工智能
在本系列的第二篇文章中,我们将继续探讨Word2Vec模型,这次重点介绍负采样(NegativeSampling)技术。负采样是一种优化Skip-gram模型训练效率的技术,它能在大规模语料库中显著减少计算复杂度。接下来,我们将通过详细的代码实现和理论讲解,帮助你理解负采样的工作原理及其在Word2Vec中的应用。1.Word2Vec(负采样)原理1.1负采样的背景在Word2Vec的Skip-g
- 牛客网面试必刷TOP101-03二叉树BM40 重建二叉树
bingw0114
面试数据结构职场和发展
描述给定节点数为n的二叉树的前序遍历和中序遍历结果,请重建出该二叉树并返回它的头结点。例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建出如下图所示。提示:1.vin.length==pre.length2.pre和vin均无重复元素3.vin出现的元素均出现在pre里4.只需要返回根结点,系统会自动输出整颗树做答案对比数据范围:n≤20
- 周报管理系统
大霸王龙
行业+领域+业务场景=定制pythonmicrosoftascii文本处理
代码仓库产品名称:智汇周报管理系统主要功能:自动化报告生成:智汇周报管理系统能够自动收集项目进展、任务完成情况、团队成员工作日志等关键数据,基于预设模板或用户自定义模板,一键生成周报。支持多格式导出(如Word、PDF、Excel),满足不同场景下的报告需求。智能数据分析与可视化:系统内置强大的数据分析引擎,能够自动对收集到的数据进行统计分析,如任务完成率、进度延误情况、成员工作负荷等,并通过图表
- 计算机网络中常用的端口号以及对应的应用程序
东锋1.3
计算机网络与通信网络
计算机网络中常用端口号及其应用程序详解在计算机网络的世界里,端口号扮演着至关重要的角色,它是标识网络应用程序的一种方式,使得不同的应用程序能够在同一台计算机上同时运行,并通过各自不同的端口与网络进行通信。在网络通信过程中,每个数据包都包含源端口号和目标端口号,以此来确保数据包能准确无误地传输到目标应用程序。接下来,让我们详细了解一些网络中常用的端口号及其对应的应用程序。1.端口号:80应用程序:H
- 适配器模式
蓝田~
适配器模式pythonjava
适配器模式(AdapterPattern)是一种结构型设计模式,它的主要目的是将一个类的接口转换成客户端所期待的另一种接口形式。这种模式使得原本由于接口不兼容而不能一起工作的类可以协同工作。适配器模式在软件开发中经常被用来使新的接口与老的接口能够一起工作,以利用现有的功能而不影响原有系统的稳定。实现方式类适配器通过多重继承对一个接口与另外一个接口进行匹配。具体来说,就是创建一个新类,这个新类既
- 讯飞绘镜(ai生成视频)技术浅析(一)
爱研究的小牛
AIGC—视频AIGC—技术综述人工智能AIGC深度学习
讯飞绘镜(也称为星火绘镜)是科大讯飞推出的一款基于人工智能技术的短视频创作平台,旨在通过先进的AI技术简化视频创作流程,让用户能够轻松将创意转化为高质量的视频内容。以下是对讯飞绘镜相关技术、工作原理及具体实现的详细介绍:一、核心技术讯飞绘镜的核心技术主要依托于科大讯飞的星火大模型,并结合了多种先进的AI技术,包括:1.大模型技术:基于讯飞星火大模型,为脚本生成、分镜生成等提供基础能力支持。该模型能
- 喜讯!云起无垠获评“国家高新技术企业”认证
云起无垠
人工智能
近日,依据《高新技术企业认定管理办法》以及《高新技术企业认定管理工作指引》的相关规定,北京市认定机构对2024年认定报备的第二批高新技术企业展开备案公示,北京云起无垠科技有限公司成功斩获“国家高新技术企业”认定资质。“国家高新技术企业”堪称国家科技创新型企业的巅峰荣誉,它指那些于国家重点扶持的高新技术领域内,锲而不舍地进行研发工作并实现技术成果转化,进而构筑起企业核心自主知识产权,以之为根基开展经
- 【2024校招总结帖】数据分析、面试经验、心得体会分享
huaxinjiayou
java
首航新能源,一进来就开始大批裁员工作节奏比较快,公司对员工的加班要求也比较严格,而且没有加班费,缺乏福利待遇。另外,公司裁员频繁,而阿里国际一面面经吹爆阿里国际面试官,比某些自以为是的面试官好太多了,面试还不开摄像头。写题的时候,我问他要开摄像头吗鼠人传(第五十二集,2024/4/30)刷题:补昨天的C、MinimizingtheSum,定义dp[i][j]为长度i,使用最多j次可2024西山居S
- Linux系统(Ubuntu)上安装单机版Redis详细指南
一休哥助手
数据库linuxubunturedis
目录安装前的准备工作下载与安装Redis配置Redis启动RedisRedis基本操作配置Redis开机自启动常见问题及解决方案总结<
- 2024.3.26 腾讯魔方工作室—golang后台开发面经
2301_79125642
java
题解|#将两个SELECT语句结合起来(一)#selectprod_id,quantityfromOrderItemswherequanti2024.3.26腾讯魔方工作室—golang后台开发面经全程拷打,深挖项目,几乎不问八股,有些问题想不太清楚了,只是凭着模糊记忆把大体问题写下。做了三个项目题解|#求int型正整数在内存中存储时1的个数#importjava.util.Scanner;//注
- Coze,Dify,FastGPT,对比
云连山
AI编程AI编程
在当今AI技术迅速发展的背景下,AIAgent智能体成为了关键领域,Coze、Dify和FastGPT作为其中的佼佼者,各有千秋。平台介绍-FastGPT:由环界云计算公司发起,是基于大语言模型(LLM)的开源知识库问答系统。其亮点是支持Flow可视化工作流编排,在知识问答领域表现出色,拥有庞大用户群体,包括数百家企业付费客户等。网址为https://fastgpt.cn/。-Dify:苏州语灵人
- 【黑龙江乡镇界】面图层arcgis数据shp格式乡镇名称和编码wgs84无偏移内容测评
鸿业远图科技
arcgis
本文将详细讲解与“最新黑龙江乡镇界面图层arcgis数据shp格式乡镇名称和编码wgs84无偏移”相关的知识点,包括GIS基础、ArcGIS软件、SHP文件格式、WGS84坐标系统以及乡镇行政数据的重要性。GIS基础GIS(GeographicInformationSystem,地理信息系统)是一种用于采集、存储、管理、分析和展示所有类型地理数据的系统。它整合了地图、数据库、统计分析和计算机图形等
- kafka内部工作机制
一只叫狗的猫
#kafka
集群中成员关系kafka使用zookeeper来维护成员信息。没个broker都有唯一的id,这个标识可以在配置文件中配置,在broker启动的时候,它会创建临时的节点把id注册到zookeeper中,当有其他broker加入集群中时,会判断是否已经有这个id,如果有相同的id则会注册失败。当broker宕机的时候,broker创建的临时节点会从zookeeper中移除,其它的kafka组件也都会
- python做并行计算_python做并行计算可以吗
角动量不守恒
python做并行计算
python可以做并行计算,下面是相关介绍:一、概览ParallelPython是一个python模块,提供在SMP(具有多个处理器或多核的系统)和集群(通过网络连接的计算机)上并行执行python代码的机制。它轻巧,易于安装和与其他python软件集成。ParallelPython是一个用纯Python编写的开源和跨平台模块。二、特性在SMP和集群上并行执行python代码易于理解和实现基于Jo
- 7. 马科维茨资产组合模型+金融研报AI长文本智能体(Qwen-Long)增强方案(理论+Python实战)
AI量金术师
金融资产组合模型进化论人工智能金融python机器学习算法大数据线性回归
目录0.承前1.深度金融研报准备2.核心AI函数代码讲解2.1函数概述2.2输入参数2.3主要流程2.4异常处理2.5清理工作2.7get_ai_weights函数汇总3.汇总代码4.反思4.1不足之处4.2提升思路5.启后0.承前本篇博文是对前两篇文章,链接:5.马科维茨资产组合模型+政策意图AI金融智能体(Qwen-Max)增强方案(理论+Python实战)6.马科维茨资产组合模型+政策意图A
- 【Kafka:概念、架构与应用】
三日看尽长安花
系统架构师kafka架构分布式
Kafka:概念、架构与应用目录什么是KafkaKafka的核心概念2.1生产者(Producer)2.2消费者(Consumer)2.3主题(Topic)2.4分区(Partition)2.5消息偏移量(Offset)2.6消费组(ConsumerGroup)Kafka的架构设计3.1Broker与集群3.2Zookeeper的作用Kafka的工作流程Kafka的应用场景Kafka的优缺点分析<
- Python pip安装、使用详解
南山南北山北
Python语言pythonpip开发语言
1、Pythonpip简介pip是Python的软件包安装管理程序(你可以把它简单理解为类似Linux操作系统中的rpm/apt包管理工具),你可以使用pip从Python包索引和其他索引安装包。一般情况下,Python2.7/Python3.4以上版本默认自带安装了pip工具,当然,如果你的安装方式是如下3种之一,那么pip也会被自动安装:在虚拟环境中工作;使用从python.org下载的Pyt
- ROS 实时修改动态参数的方法
jucat
ROS机器人自动驾驶linux
参考HokuyoLaser动态参数设置wikiipa覆盖算法源码背景工作中需要在C++程序运行过程中,根据场景开关costmap2d的障碍物感知图层以及膨胀图层。在yaml启动参数配置中加载障碍物层插件和膨胀层插件,但是关闭它们的更新,大概如下:global_costmap:global_frame:maprobot_base_frame:base_footprint...plugins:-{na
- 计算机视觉:卷积核
每天五分钟玩转人工智能
计算机视觉计算机视觉深度学习人工智能机器学习卷积神经网络
本文重点卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种深度学习模型,广泛应用于图像识别、自然语言处理、语音识别等领域。在卷积神经网络中,卷积核是网络的核心组件之一。通过不断堆叠卷积层和池化层,可以逐渐提取出更高级别的特征,从而实现更复杂的任务。卷积神经网络中的卷积核可以通过反向传播算法进行训练和优化,使其能够自适应地学习输入数据中的特征。因此,卷积神经网络在图像
- 4-2 计算机视觉-卷积神经网络-基本网络组件
沉睡的小卡比兽
AI基础知识cnn卷积核端到端训练计算机视觉卷积神经网络
1、为什么卷积核一般都是奇数?2、由哪些层组成了基本的卷积神经网络,作用分别是什么?3、卷积层和池化层有什么区别?4、什么是端到端学习end-to-end?1、为什么卷积核一般都是奇数?(1)保护位置信息:保证锚点刚好在中间,方便以模块中心为标准进行滑动卷积,避免了位置信息发生偏移(2)padding时的对称性:保证padding时图像的两边依然对齐(3)一些历史尝试的经验,如边缘检测等,还有pa
- 清华大学提出Pointformer:基于Transformer的3D目标检测
Amusi(CVer)
计算机视觉论文速递Transformer3D目标检测深度学习计算机视觉机器学习人工智能自动驾驶
没错!Transformer的"魔爪"已经伸向3D目标检测了。Pointformer:用于3D点云的特征学习backbone,可结合并提高现有的3D点云目标检测网络性能,如VoteNet、PointRCNN和CBGS等。注:文末附【Transformer】和【3D目标检测】学习交流群Transformer最近在3D点云方向应用的工作可以看一下:牛津大学等提出:PointTransformer清华大
- 【业界新闻】浪潮高端存储系统技术发展及展望(上篇)
nicole-cao
业界新闻浪潮高端存储raid
转自:http://news.watchstor.com/corp-147547.htm[导读]从“9.11事件”之后大量的企业因为数据丢失而宣告破产可以看出数据的重要地位。随着计算机技术的发展,实现了数据计算和数据存储的分离,而数据存储由存储系统完成。存储系统的出现,尤其是高端存储系统的出现使得数据存储变得专业化,存储系统可以为用户提供更高性能、可用性和可靠性的数据存储功能。本系列文章,从高端存
- 车联网产业中网络安全与数据安全应该怎么做
securitypaper
白皮书学习web安全安全网络
说明非常看好车联网产业的发展,新的产业出现,必将出现新的安全问题,因此希望对车联网安全所有学习和研究,本文主要是学习关于加强车联网和数据安全工作的通知2021做的一些摘录,希望不断的深入学习车联网相关安全内容车联网介绍车联网是新一代网络通信技术与汽车、电子、道路交通运输等领域深度融合的新兴产业形态。智能网联汽车是搭载先进的车载传感器、控制器、执行器等装置,并融合现代通信与网络技术,实现车与车、路、
- ESP32-C3入门教程 环境篇①——简单介绍与硬件准备
小康师兄
ESP32-C3入门教程物联网嵌入式ESP32ESP32-C3WiFi
文章目录一、ESP32-C3简单介绍二、开发板差异三、开发板主要组件四、开发板原理图五、工作准备六、参考一、ESP32-C3简单介绍2.4GHzWi-Fi低功耗蓝牙高性能32位RISC-V单核处理器多种外设内置安全硬件二、开发板差异官方文档介绍了两种开发板ESP32-C3-DevKitM-1ESP32-C3-DevKitC-02认真看了下资料介绍,其实会发现两个开发板都差不多,底板功能pin都差不
- java封装继承多态等
麦田的设计者
javaeclipsejvmcencapsulatopn
最近一段时间看了很多的视频却忘记总结了,现在只能想到什么写什么了,希望能起到一个回忆巩固的作用。
1、final关键字
译为:最终的
&
- F5与集群的区别
bijian1013
weblogic集群F5
http请求配置不是通过集群,而是F5;集群是weblogic容器的,如果是ejb接口是通过集群。
F5同集群的差别,主要还是会话复制的问题,F5一把是分发http请求用的,因为http都是无状态的服务,无需关注会话问题,类似
- LeetCode[Math] - #7 Reverse Integer
Cwind
java题解MathLeetCodeAlgorithm
原题链接:#7 Reverse Integer
要求:
按位反转输入的数字
例1: 输入 x = 123, 返回 321
例2: 输入 x = -123, 返回 -321
难度:简单
分析:
对于一般情况,首先保存输入数字的符号,然后每次取输入的末位(x%10)作为输出的高位(result = result*10 + x%10)即可。但
- BufferedOutputStream
周凡杨
首先说一下这个大批量,是指有上千万的数据量。
例子:
有一张短信历史表,其数据有上千万条数据,要进行数据备份到文本文件,就是执行如下SQL然后将结果集写入到文件中!
select t.msisd
- linux下模拟按键输入和鼠标
被触发
linux
查看/dev/input/eventX是什么类型的事件, cat /proc/bus/input/devices
设备有着自己特殊的按键键码,我需要将一些标准的按键,比如0-9,X-Z等模拟成标准按键,比如KEY_0,KEY-Z等,所以需要用到按键 模拟,具体方法就是操作/dev/input/event1文件,向它写入个input_event结构体就可以模拟按键的输入了。
linux/in
- ContentProvider初体验
肆无忌惮_
ContentProvider
ContentProvider在安卓开发中非常重要。与Activity,Service,BroadcastReceiver并称安卓组件四大天王。
在android中的作用是用来对外共享数据。因为安卓程序的数据库文件存放在data/data/packagename里面,这里面的文件默认都是私有的,别的程序无法访问。
如果QQ游戏想访问手机QQ的帐号信息一键登录,那么就需要使用内容提供者COnte
- 关于Spring MVC项目(maven)中通过fileupload上传文件
843977358
mybatisspring mvc修改头像上传文件upload
Spring MVC 中通过fileupload上传文件,其中项目使用maven管理。
1.上传文件首先需要的是导入相关支持jar包:commons-fileupload.jar,commons-io.jar
因为我是用的maven管理项目,所以要在pom文件中配置(每个人的jar包位置根据实际情况定)
<!-- 文件上传 start by zhangyd-c --&g
- 使用svnkit api,纯java操作svn,实现svn提交,更新等操作
aigo
svnkit
原文:http://blog.csdn.net/hardwin/article/details/7963318
import java.io.File;
import org.apache.log4j.Logger;
import org.tmatesoft.svn.core.SVNCommitInfo;
import org.tmateso
- 对比浏览器,casperjs,httpclient的Header信息
alleni123
爬虫crawlerheader
@Override
protected void doGet(HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException
{
String type=req.getParameter("type");
Enumeration es=re
- java.io操作 DataInputStream和DataOutputStream基本数据流
百合不是茶
java流
1,java中如果不保存整个对象,只保存类中的属性,那么我们可以使用本篇文章中的方法,如果要保存整个对象 先将类实例化 后面的文章将详细写到
2,DataInputStream 是java.io包中一个数据输入流允许应用程序以与机器无关方式从底层输入流中读取基本 Java 数据类型。应用程序可以使用数据输出流写入稍后由数据输入流读取的数据。
- 车辆保险理赔案例
bijian1013
车险
理赔案例:
一货运车,运输公司为车辆购买了机动车商业险和交强险,也买了安全生产责任险,运输一车烟花爆竹,在行驶途中发生爆炸,出现车毁、货损、司机亡、炸死一路人、炸毁一间民宅等惨剧,针对这几种情况,该如何赔付。
赔付建议和方案:
客户所买交强险在这里不起作用,因为交强险的赔付前提是:“机动车发生道路交通意外事故”;
如果是交通意外事故引发的爆炸,则优先适用交强险条款进行赔付,不足的部分由商业
- 学习Spring必学的Java基础知识(5)—注解
bijian1013
javaspring
文章来源:http://www.iteye.com/topic/1123823,整理在我的博客有两个目的:一个是原文确实很不错,通俗易懂,督促自已将博主的这一系列关于Spring文章都学完;另一个原因是为免原文被博主删除,在此记录,方便以后查找阅读。
有必要对
- 【Struts2一】Struts2 Hello World
bit1129
Hello world
Struts2 Hello World应用的基本步骤
创建Struts2的Hello World应用,包括如下几步:
1.配置web.xml
2.创建Action
3.创建struts.xml,配置Action
4.启动web server,通过浏览器访问
配置web.xml
<?xml version="1.0" encoding="
- 【Avro二】Avro RPC框架
bit1129
rpc
1. Avro RPC简介 1.1. RPC
RPC逻辑上分为二层,一是传输层,负责网络通信;二是协议层,将数据按照一定协议格式打包和解包
从序列化方式来看,Apache Thrift 和Google的Protocol Buffers和Avro应该是属于同一个级别的框架,都能跨语言,性能优秀,数据精简,但是Avro的动态模式(不用生成代码,而且性能很好)这个特点让人非常喜欢,比较适合R
- lua set get cookie
ronin47
lua cookie
lua:
local access_token = ngx.var.cookie_SGAccessToken
if access_token then
ngx.header["Set-Cookie"] = "SGAccessToken="..access_token.."; path=/;Max-Age=3000"
end
- java-打印不大于N的质数
bylijinnan
java
public class PrimeNumber {
/**
* 寻找不大于N的质数
*/
public static void main(String[] args) {
int n=100;
PrimeNumber pn=new PrimeNumber();
pn.printPrimeNumber(n);
System.out.print
- Spring源码学习-PropertyPlaceholderHelper
bylijinnan
javaspring
今天在看Spring 3.0.0.RELEASE的源码,发现PropertyPlaceholderHelper的一个bug
当时觉得奇怪,上网一搜,果然是个bug,不过早就有人发现了,且已经修复:
详见:
http://forum.spring.io/forum/spring-projects/container/88107-propertyplaceholderhelper-bug
- [逻辑与拓扑]布尔逻辑与拓扑结构的结合会产生什么?
comsci
拓扑
如果我们已经在一个工作流的节点中嵌入了可以进行逻辑推理的代码,那么成百上千个这样的节点如果组成一个拓扑网络,而这个网络是可以自动遍历的,非线性的拓扑计算模型和节点内部的布尔逻辑处理的结合,会产生什么样的结果呢?
是否可以形成一种新的模糊语言识别和处理模型呢? 大家有兴趣可以试试,用软件搞这些有个好处,就是花钱比较少,就算不成
- ITEYE 都换百度推广了
cuisuqiang
GoogleAdSense百度推广广告外快
以前ITEYE的广告都是谷歌的Google AdSense,现在都换成百度推广了。
为什么个人博客设置里面还是Google AdSense呢?
都知道Google AdSense不好申请,这在ITEYE上也不是讨论了一两天了,强烈建议ITEYE换掉Google AdSense。至少,用一个好申请的吧。
什么时候能从ITEYE上来点外快,哪怕少点
- 新浪微博技术架构分析
dalan_123
新浪微博架构
新浪微博在短短一年时间内从零发展到五千万用户,我们的基层架构也发展了几个版本。第一版就是是非常快的,我们可以非常快的实现我们的模块。我们看一下技术特点,微博这个产品从架构上来分析,它需要解决的是发表和订阅的问题。我们第一版采用的是推的消息模式,假如说我们一个明星用户他有10万个粉丝,那就是说用户发表一条微博的时候,我们把这个微博消息攒成10万份,这样就是很简单了,第一版的架构实际上就是这两行字。第
- 玩转ARP攻击
dcj3sjt126com
r
我写这片文章只是想让你明白深刻理解某一协议的好处。高手免看。如果有人利用这片文章所做的一切事情,盖不负责。 网上关于ARP的资料已经很多了,就不用我都说了。 用某一位高手的话来说,“我们能做的事情很多,唯一受限制的是我们的创造力和想象力”。 ARP也是如此。 以下讨论的机子有 一个要攻击的机子:10.5.4.178 硬件地址:52:54:4C:98
- PHP编码规范
dcj3sjt126com
编码规范
一、文件格式
1. 对于只含有 php 代码的文件,我们将在文件结尾处忽略掉 "?>" 。这是为了防止多余的空格或者其它字符影响到代码。例如:<?php$foo = 'foo';2. 缩进应该能够反映出代码的逻辑结果,尽量使用四个空格,禁止使用制表符TAB,因为这样能够保证有跨客户端编程器软件的灵活性。例
- linux 脱机管理(nohup)
eksliang
linux nohupnohup
脱机管理 nohup
转载请出自出处:http://eksliang.iteye.com/blog/2166699
nohup可以让你在脱机或者注销系统后,还能够让工作继续进行。他的语法如下
nohup [命令与参数] --在终端机前台工作
nohup [命令与参数] & --在终端机后台工作
但是这个命令需要注意的是,nohup并不支持bash的内置命令,所
- BusinessObjects Enterprise Java SDK
greemranqq
javaBOSAPCrystal Reports
最近项目用到oracle_ADF 从SAP/BO 上调用 水晶报表,资料比较少,我做一个简单的分享,给和我一样的新手 提供更多的便利。
首先,我是尝试用JAVA JSP 去访问的。
官方API:http://devlibrary.businessobjects.com/BusinessObjectsxi/en/en/BOE_SDK/boesdk_ja
- 系统负载剧变下的管控策略
iamzhongyong
高并发
假如目前的系统有100台机器,能够支撑每天1亿的点击量(这个就简单比喻一下),然后系统流量剧变了要,我如何应对,系统有那些策略可以处理,这里总结了一下之前的一些做法。
1、水平扩展
这个最容易理解,加机器,这样的话对于系统刚刚开始的伸缩性设计要求比较高,能够非常灵活的添加机器,来应对流量的变化。
2、系统分组
假如系统服务的业务不同,有优先级高的,有优先级低的,那就让不同的业务调用提前分组
- BitTorrent DHT 协议中文翻译
justjavac
bit
前言
做了一个磁力链接和BT种子的搜索引擎 {Magnet & Torrent},因此把 DHT 协议重新看了一遍。
BEP: 5Title: DHT ProtocolVersion: 3dec52cb3ae103ce22358e3894b31cad47a6f22bLast-Modified: Tue Apr 2 16:51:45 2013 -070
- Ubuntu下Java环境的搭建
macroli
java工作ubuntu
配置命令:
$sudo apt-get install ubuntu-restricted-extras
再运行如下命令:
$sudo apt-get install sun-java6-jdk
待安装完毕后选择默认Java.
$sudo update- alternatives --config java
安装过程提示选择,输入“2”即可,然后按回车键确定。
- js字符串转日期(兼容IE所有版本)
qiaolevip
TODateStringIE
/**
* 字符串转时间(yyyy-MM-dd HH:mm:ss)
* result (分钟)
*/
stringToDate : function(fDate){
var fullDate = fDate.split(" ")[0].split("-");
var fullTime = fDate.split("
- 【数据挖掘学习】关联规则算法Apriori的学习与SQL简单实现购物篮分析
superlxw1234
sql数据挖掘关联规则
关联规则挖掘用于寻找给定数据集中项之间的有趣的关联或相关关系。
关联规则揭示了数据项间的未知的依赖关系,根据所挖掘的关联关系,可以从一个数据对象的信息来推断另一个数据对象的信息。
例如购物篮分析。牛奶 ⇒ 面包 [支持度:3%,置信度:40%] 支持度3%:意味3%顾客同时购买牛奶和面包。 置信度40%:意味购买牛奶的顾客40%也购买面包。 规则的支持度和置信度是两个规则兴
- Spring 5.0 的系统需求,期待你的反馈
wiselyman
spring
Spring 5.0将在2016年发布。Spring5.0将支持JDK 9。
Spring 5.0的特性计划还在工作中,请保持关注,所以作者希望从使用者得到关于Spring 5.0系统需求方面的反馈。