import pandas as pd
pd.read_csv('C:\\Users\\hx133330\\Desktop\\test1.csv')
|
seriesuid |
coordX |
coordY |
coordZ |
diameter_mm |
Unnamed: 5 |
0 |
1.3.6.1.4.1.14519.5.2.1.6279.6001.100225287222… |
-128.699421 |
-175.319272 |
-298.387506 |
5.651471 |
NaN |
1 |
1.3.6.1.4.1.14519.5.2.1.6279.6001.100225287222… |
103.783651 |
-211.925149 |
-227.121250 |
4.224708 |
NaN |
2 |
1.3.6.1.4.1.14519.5.2.1.6279.6001.100398138793… |
69.639017 |
-140.944586 |
876.374496 |
5.786348 |
NaN |
3 |
1.3.6.1.4.1.14519.5.2.1.6279.6001.100621383016… |
-24.013824 |
192.102405 |
-391.081276 |
8.143262 |
NaN |
4 |
1.3.6.1.4.1.14519.5.2.1.6279.6001.100621383016… |
2.441547 |
172.464881 |
-405.493732 |
18.545150 |
NaN |
5 |
1.3.6.1.4.1.14519.5.2.1.6279.6001.100621383016… |
90.931713 |
149.027266 |
-426.544715 |
18.208570 |
NaN |
6 |
1.3.6.1.4.1.14519.5.2.1.6279.6001.100621383016… |
89.540769 |
196.405159 |
-515.073322 |
16.381276 |
NaN |
7 |
1.3.6.1.4.1.14519.5.2.1.6279.6001.100953483028… |
81.509646 |
54.957219 |
-150.346423 |
10.362321 |
NaN |
8 |
1.3.6.1.4.1.14519.5.2.1.6279.6001.102681962408… |
105.055792 |
19.825260 |
-91.247251 |
21.089619 |
NaN |
9 |
1.3.6.1.4.1.14519.5.2.1.6279.6001.104562737760… |
-124.834262 |
127.247155 |
-473.064479 |
10.465854 |
NaN |
10 |
1.3.6.1.4.1.14519.5.2.1.6279.6001.105495028985… |
-106.901301 |
21.922987 |
-126.916900 |
9.745259 |
NaN |
11 |
1.3.6.1.4.1.14519.5.2.1.6279.6001.106164978370… |
2.263816 |
33.526418 |
-170.636950 |
7.168542 |
NaN |
12 |
1.3.6.1.4.1.14519.5.2.1.6279.6001.106379658920… |
-70.550889 |
66.359484 |
-160.942932 |
6.642185 |
NaN |
13 |
1.3.6.1.4.1.14519.5.2.1.6279.6001.106379658920… |
-70.660628 |
-29.547770 |
-106.903082 |
4.543420 |
NaN |
14 |
1.3.6.1.4.1.14519.5.2.1.6279.6001.106630482085… |
-96.439534 |
9.736190 |
-175.037571 |
6.753817 |
NaN |
15 |
1.3.6.1.4.1.14519.5.2.1.6279.6001.106719103982… |
-57.087180 |
74.259266 |
1790.494057 |
13.693566 |
NaN |
file_csv = pd.read_csv('C:\\Users\\hx133330\\Desktop\\test1.csv')
type(file_csv)
pandas.core.frame.DataFrame
data_old = file_csv.values
data_old[0]
array([‘1.3.6.1.4.1.14519.5.2.1.6279.6001.100225287222365663678666836860’, -128.6994211, -175.31927180000002, -298.38750639999995, 5.651470635, nan], dtype=object)
data_new = []
import numpy as np
[1]+list(data[0:-1])
[1, ‘1.3.6.1.4.1.14519.5.2.1.6279.6001.106719103982792863757268101375’, -57.08718036, 74.25926591, 1790.494057, 13.69356578]
data_new = []
for i,data in enumerate(data_old):
data_new.append([i]+list(data[0:-1]))
data_new[0]
[0, ‘1.3.6.1.4.1.14519.5.2.1.6279.6001.100225287222365663678666836860’, -128.6994211, -175.31927180000002, -298.38750639999995, 5.651470635]
columns = ['id','seriesuid', 'coordX', 'coordY', 'coordZ', 'diameter_mm']
labeled_df = pd.DataFrame(columns=columns, data=data_new)
labeled_df
|
id |
seriesuid |
coordX |
coordY |
coordZ |
diameter_mm |
0 |
0 |
1.3.6.1.4.1.14519.5.2.1.6279.6001.100225287222… |
-128.699421 |
-175.319272 |
-298.387506 |
5.651471 |
1 |
1 |
1.3.6.1.4.1.14519.5.2.1.6279.6001.100225287222… |
103.783651 |
-211.925149 |
-227.121250 |
4.224708 |
2 |
2 |
1.3.6.1.4.1.14519.5.2.1.6279.6001.100398138793… |
69.639017 |
-140.944586 |
876.374496 |
5.786348 |
3 |
3 |
1.3.6.1.4.1.14519.5.2.1.6279.6001.100621383016… |
-24.013824 |
192.102405 |
-391.081276 |
8.143262 |
4 |
4 |
1.3.6.1.4.1.14519.5.2.1.6279.6001.100621383016… |
2.441547 |
172.464881 |
-405.493732 |
18.545150 |
5 |
5 |
1.3.6.1.4.1.14519.5.2.1.6279.6001.100621383016… |
90.931713 |
149.027266 |
-426.544715 |
18.208570 |
6 |
6 |
1.3.6.1.4.1.14519.5.2.1.6279.6001.100621383016… |
89.540769 |
196.405159 |
-515.073322 |
16.381276 |
7 |
7 |
1.3.6.1.4.1.14519.5.2.1.6279.6001.100953483028… |
81.509646 |
54.957219 |
-150.346423 |
10.362321 |
8 |
8 |
1.3.6.1.4.1.14519.5.2.1.6279.6001.102681962408… |
105.055792 |
19.825260 |
-91.247251 |
21.089619 |
9 |
9 |
1.3.6.1.4.1.14519.5.2.1.6279.6001.104562737760… |
-124.834262 |
127.247155 |
-473.064479 |
10.465854 |
10 |
10 |
1.3.6.1.4.1.14519.5.2.1.6279.6001.105495028985… |
-106.901301 |
21.922987 |
-126.916900 |
9.745259 |
11 |
11 |
1.3.6.1.4.1.14519.5.2.1.6279.6001.106164978370… |
2.263816 |
33.526418 |
-170.636950 |
7.168542 |
12 |
12 |
1.3.6.1.4.1.14519.5.2.1.6279.6001.106379658920… |
-70.550889 |
66.359484 |
-160.942932 |
6.642185 |
13 |
13 |
1.3.6.1.4.1.14519.5.2.1.6279.6001.106379658920… |
-70.660628 |
-29.547770 |
-106.903082 |
4.543420 |
14 |
14 |
1.3.6.1.4.1.14519.5.2.1.6279.6001.106630482085… |
-96.439534 |
9.736190 |
-175.037571 |
6.753817 |
15 |
15 |
1.3.6.1.4.1.14519.5.2.1.6279.6001.106719103982… |
-57.087180 |
74.259266 |
1790.494057 |
13.693566 |
labeled_df.to_csv('new.csv')