java数据结构之树

    无论是链表,栈还是队列,它们都是线性结构,每个节点的左边最多一个节点,右边也最多一个节点,对于大量的输入数据,线性表的访问时间太慢,不宜使用。是一种非线性的数据结构,其大部分操作的运行时间平均为O(logn)。

树的标准定义:

    树(tree)是包含n(n>0)个节点的有穷结合,其中:

  1. 每个元素称为节点(node);

  2. 有一个特定的节点称为根节点或树根(root);

  3. 除根节点之外的其余数据元素被分为m(m>=0)个互不相交的集合T1,T2,…..Tm-1,其中每一个集合Ti(1=

树具有以下特点:

(1) 每个节点有零个或多个子节点;
(2) 每个子节点只有一个父节点;
(3) 没有父节点的节点称为根节点。

关于树的一些术语:

  • 节点的度:一个节点含有的子树的个数称为该节点的度;

  • 叶节点或终端节点: 度为零的节点称为叶节点;

  • 非终端节点或分支节点;度不为零的节点;

  • 孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点;

  • 兄弟节点:具有相同父节点的节点互称为兄弟节点;

  • 树的高度或深度:定义一棵树的根结点层次为1,其他节点的层次是其父结点层次加1。一棵树中所有结点的层次的最大值称为这棵树的深度。节点的层次:从根开始定义起,根为第1层,根的子结点为第2层,以此类推;

  • 树的度:一棵树中,最大的节点的度称为树的度;

  • 节点的祖先:从根到该节点所经分支上的所有节点;

  • 子孙:以某节点为根的子树中任一节点都称为该节点的子孙。

  • 森林:由m(m>=0)棵互不相交的树的集合称为森林;

树的应用

   大部分操作系统的目录结构就是采用树结构。

   树的种类有很多,树所扩展出来的很多数据结构都有着很大的作用,比如说红黑树,B树,后缀树等等

1.二叉树

        二叉树是数据结构中一种重要的数据结构,也是树表家族最为基础的结构。

  二叉树的定义:二叉树的每个结点至多只有二棵子树(不存在度大于2的结点),二叉树的子树有左右之分,次序不能颠倒。二叉树的第i层至多有2i-1个结点;深度为k的二叉树至多有2k-1个结点;对任何一棵二叉树T,如果其终端结点数为n0,度为2的结点数为n2,则n0=n2+1。

       二叉树的示例
java数据结构之树_第1张图片
满二叉树和完全二叉树:

  满二叉树:除最后一层无任何子节点外,每一层上的所有结点都有两个子结点。也可以这样理解,除叶子结点外的所有结点均有两个子结点。节点数达到最大值,所有叶子结点必须在同一层上。

  满二叉树的性质:

  1) 一颗树深度为h,最大层数为k,深度与最大层数相同,k=h;

  2) 叶子数为2h;

  3) 第k层的结点数是:2k-1;

  4) 总结点数是:2k-1,且总节点数一定是奇数。

  完全二叉树:若设二叉树的深度为h,除第 h 层外,其它各层 (1~(h-1)层) 的结点数都达到最大个数,第h层所有的结点都连续集中在最左边,这就是完全二叉树。

  注:完全二叉树是效率很高的数据结构,堆是一种完全二叉树或者近似完全二叉树,所以效率极高,像十分常用的排序算法、Dijkstra算法、Prim算法等都要用堆才能优化,二叉排序树的效率也要借助平衡性来提高,而平衡性基于完全二叉树。
java数据结构之树_第2张图片

二叉树的性质:

  1) 在非空二叉树中,第i层的结点总数不超过2i-1, i>=1;

  2) 深度为h的二叉树最多有2h-1个结点(h>=1),最少有h个结点;

  3) 对于任意一棵二叉树,如果其叶结点数为N0,而度数为2的结点总数为N2,则N0=N2+1;
  4) 具有n个结点的完全二叉树的深度为log2(n+1);
  5)有N个结点的完全二叉树各结点如果用顺序方式存储,则结点之间有如下关系:
    若I为结点编号则 如果I>1,则其父结点的编号为I/2;
    如果2I<=N,则其左儿子(即左子树的根结点)的编号为2I;若2I>N,则无左儿子;
    如果2I+1<=N,则其右儿子的结点编号为2I+1;若2I+1>N,则无右儿子。
  6)给定N个节点,能构成h(N)种不同的二叉树,其中h(N)为卡特兰数的第N项,h(n)=C(2*n, n)/(n+1)。
  7)设有i个枝点,I为所有枝点的道路长度总和,J为叶的道路长度总和J=I+2i。

java代码实现:


1.若array[0,…,n-1]表示一颗完全二叉树的顺序存储模式,则双亲节点指针跟孩子节点指针之间的内在关系如下:
    任一节点指针i:父节点:i == 0 ? null : (i-1)/2
                             左孩子:2 * i + 1
                             右孩子:2 * i + 2

2.n个节点的完全二叉树array[0,…,n-1],最后一个节点n是第(n-1-1)/2个节点的孩子。

public class BinTreeTraverse2 {  

    private int[] array = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };  
    private static List nodeList = null;  

    /** 
     * 内部类:节点 
     *  
     * @author [email protected] @date: 2011-5-17 
     *  
     */  
    private static class Node {  
        Node leftChild;  
        Node rightChild;  
        int data;  

        Node(int newData) {  
            leftChild = null;  
            rightChild = null;  
            data = newData;  
        }  
    }  

    public void createBinTree() {  
        nodeList = new LinkedList();  
        // 将一个数组的值依次转换为Node节点  
        for (int nodeIndex = 0; nodeIndex < array.length; nodeIndex++) {  
            nodeList.add(new Node(array[nodeIndex]));  
        }  
        // 对前lastParentIndex-1个父节点按照父节点与孩子节点的数字关系建立二叉树  
        for (int parentIndex = 0; parentIndex < (array.length - 1 -1 )/2; parentIndex++) {  
            // 左孩子  
            nodeList.get(parentIndex).leftChild = nodeList  
                    .get(parentIndex * 2 + 1);  
            // 右孩子  
            nodeList.get(parentIndex).rightChild = nodeList  
                    .get(parentIndex * 2 + 2);  
        }  
        // 最后一个父节点:因为最后一个父节点可能没有右孩子,所以单独拿出来处理  
        int lastParentIndex = (array.length - 1 -1 )/2;  
        // 左孩子  
        nodeList.get(lastParentIndex).leftChild = nodeList  
                .get(lastParentIndex * 2 + 1);  
        // 右孩子,如果数组的长度为奇数才建立右孩子  
        if (array.length % 2 == 1) {  
            nodeList.get(lastParentIndex).rightChild = nodeList  
                    .get(lastParentIndex * 2 + 2);  
        }  
    }  

    /** 
     * 先序遍历 
     *  
     * 这三种不同的遍历结构都是一样的,只是先后顺序不一样而已 
     *  
     * @param node 
     *            遍历的节点 
     */  
    public static void preOrderTraverse(Node node) {  
        if (node == null)  
            return;  
        System.out.print(node.data + " ");  
        preOrderTraverse(node.leftChild);  
        preOrderTraverse(node.rightChild);  
    }  

    /** 
     * 中序遍历 
     *  
     * 这三种不同的遍历结构都是一样的,只是先后顺序不一样而已 
     *  
     * @param node 
     *            遍历的节点 
     */  
    public static void inOrderTraverse(Node node) {  
        if (node == null)  
            return;  
        inOrderTraverse(node.leftChild);  
        System.out.print(node.data + " ");  
        inOrderTraverse(node.rightChild);  
    }  

    /** 
     * 后序遍历 
     *  
     * 这三种不同的遍历结构都是一样的,只是先后顺序不一样而已 
     *  
     * @param node 
     *            遍历的节点 
     */  
    public static void postOrderTraverse(Node node) {  
        if (node == null)  
            return;  
        postOrderTraverse(node.leftChild);  
        postOrderTraverse(node.rightChild);  
        System.out.print(node.data + " ");  
    }  

    public static void main(String[] args) {  
        BinTreeTraverse2 binTree = new BinTreeTraverse2();  
        binTree.createBinTree();  
        // nodeList中第0个索引处的值即为根节点  
        Node root = nodeList.get(0);  

        System.out.println("先序遍历:");  
        preOrderTraverse(root);  
        System.out.println();  

        System.out.println("中序遍历:");  
        inOrderTraverse(root);  
        System.out.println();  

        System.out.println("后序遍历:");  
        postOrderTraverse(root);  
    }  

} 

二叉查找树:

二叉排序树或者是一棵空树,或者是具有下列性质的二叉树:

(1)若左子树不空,则左子树上所有结点的值均小于它的根结点的值;
(2)若右子树不空,则右子树上所有结点的值均大于或等于它的根结点的值;
(3)左、右子树也分别为二叉排序树;

public class BinaryTree {  

    private Node root;  

    /** 
     *  
     * 内部节点类 
     * @author yhh 
     */  
    private class Node{  
        private Node left;  
        private Node right;  
        private int data;  
        public Node(int data){  
            this.left = null;  
            this.right = null;  
            this.data = data;  
        }  
    }  

    public BinaryTree(){  
        root = null;  
    }  

    /** 
     * 递归创建二叉树 
     * @param node 
     * @param data 
     */  
    public void buildTree(Node node,int data){  
        if(root == null){  
            root = new Node(data);  
        }else{  
            if(data < node.data){  
                if(node.left == null){  
                    node.left = new Node(data);  
                }else{  
                    buildTree(node.left,data);  
                }  
            }else{  
                if(node.right == null){  
                    node.right = new Node(data);  
                }else{  
                    buildTree(node.right,data);  
                }  
            }  
        }  
    }  

    /** 
     * 前序遍历 
     * @param node 
     */  
    public void preOrder(Node node){  
        if(node != null){  
            System.out.println(node.data);  
            preOrder(node.left);  
            preOrder(node.right);  
        }  
    }  

    /** 
     * 中序遍历 
     * @param node 
     */  
    public void inOrder(Node node){  
        if(node != null){  
            inOrder(node.left);  
            System.out.println(node.data);  
            inOrder(node.right);  
        }  
    }  

    /** 
     * 后序遍历 
     * @param node 
     */  
    public void postOrder(Node node){  
        if(node != null){  
            postOrder(node.left);  
            postOrder(node.right);  
            System.out.println(node.data);  
        }  
    }  

    public static void main(String[] args) {  
        int[] a = {2,4,12,45,21,6,111};  
        BinaryTree bTree = new BinaryTree();  
        for (int i = 0; i < a.length; i++) {  
            bTree.buildTree(bTree.root, a[i]);  
        }  
        bTree.preOrder(bTree.root);  
        bTree.inOrder(bTree.root);  
        bTree.postOrder(bTree.root);  
    }  

}  

2. B树(平衡查找树)

平衡查找树的目标是实现查找、插入、删除操作在最坏情况下的复杂度均为logN。

2.1 二三查找树

二三树中有两种节点:

  • 二节点对应一个键,有两个子节点
  • 三节点对应两个键,有三个子节点

二三查找树非常平衡,每个空节点到根节点的距离都是一样的 。

查找操作

在二三树中查找一个键的时候有以下规则:

  • 如果是二节点,二节点对应1个值,如果要查找的值比该节点对应的值小,就往左侧深入,反之亦成

  • 如果是三节点,三节点对应2个值,如果比两个值都小,就往左侧深入,如果介于两个值之间,就往中间深入,如果比两个值都大,就往右侧深入。

插入操作

根据查找操作的规则,先定位到需要插入的节点。如果是二节点,那么将二节点中增加一个键成为三节点。如果是三节点,在三节点中增加1个键成为四节点。由于四节点不允许在二三树中出现,因此需要分解成两个二节点,并且把中间的键提取到父节点中。下图展示四节点分解的过程:

现在要在这棵树中插入一个值7
java数据结构之树_第3张图片

首先根据查找操作的规则定位到要插入的节点,定位之后是如图所示的节点
java数据结构之树_第4张图片

由于该节点是三节点,因此插入一个键,使它成为四节点

java数据结构之树_第5张图片

由于四节点不允许在2-3树中存在,因此需要将其分解为两个二节点,并把中间的键7提到父节点中

java数据结构之树_第6张图片

这样插入操作就完成了

性能

2-3树的高度介于lgN和log_3(N)之间,因此能够保证所有的操作复杂度均在logN以下

实现

二三树的实现非常复杂,因为要判断每个节点的类型,插入节点的时候还需要判断插入节点的位置,需要考虑的情况非常多。

点的定义
package TwoThreeTree;


    class Node {
        private Node parent;
        private Node leftChild;
        private Node rightChild;
        private Node middleChild;

        // When node is 2-node, leftVal is the values, and rightVal is null.
        private T leftVal;
        private T rightVal;

        private boolean twoNode;


        protected Node() {

        }

        public static  Node newTwoNode(T value) {
            Node node = new Node();
            node.leftVal = value;
            node.twoNode = true;
            return node;
        }


        public static  Node newThreeNode(T leftVal, T rightVal) {
            Node node = new Node();
            if (leftVal.compareTo(rightVal) > 0) {
                node.rightVal = leftVal;
                node.leftVal = rightVal;
            } else {
                node.leftVal = leftVal;
                node.rightVal = rightVal;
            }
            node.twoNode = false;
            return node;
        }


        public static HoleNode newHole() {
            return new HoleNode();
        }




        public void setLeftChild(Node leftChild) {
            this.leftChild = leftChild;
            if (leftChild != null)
                leftChild.setParent(this);
        }

        public void removeChildren() {
            this.leftChild = null;
            this.rightChild = null;
        }


        public void setRightChild(Node rightChild) {
            this.rightChild = rightChild;
            if (rightChild != null)
                rightChild.setParent(this);
        }

        public void setMiddleChild(Node middleChild) {
            assert isThreeNode();
            this.middleChild = middleChild;
            if (middleChild != null) {
                middleChild.setParent(this);
            }
        }


        public final Node parent() {
            return parent;
        }

        public final void setParent(Node parent) {
            this.parent = parent;
        }


        public boolean isTerminal() {
            return leftChild == null && rightChild == null;
        }


        public T val() {
            assert isTwoNode();
            return leftVal;
        }


        public T leftVal() {
            assert isThreeNode();
            return leftVal;
        }

        public void setVal(T val) {
            assert isTwoNode();
            leftVal = val;
        }


        public T rightVal() {
            assert isThreeNode();
            return rightVal;
        }

        public void setLeftVal(T leftVal) {
            assert isThreeNode();
            this.leftVal = leftVal;
        }

        public void setRightVal(T rightVal) {
            assert isThreeNode();
            this.rightVal = rightVal;
        }

        public boolean isTwoNode() {
           // return rightVal == null;
            return twoNode;
        }

        public boolean isThreeNode() {
            return !isTwoNode();
        }

        public Node leftChild() {
            return leftChild;
        }

        public Node rightChild() {
            return rightChild;
        }

        public Node middleChild() {
            assert isThreeNode();
            return middleChild;
        }

        @SuppressWarnings("unchecked")
        public void replaceChild(Node currentChild, Node newChild) {
            if (currentChild == leftChild) {
                leftChild = newChild;
            } else if (currentChild == rightChild) {
                rightChild = newChild;
            } else {
                assert  middleChild == currentChild;
                middleChild = newChild;
            }
            newChild.setParent(this);
            currentChild.setParent(null);
        }
    }
空点的定义
package TwoThreeTree;

/**
 * A hole node does not have any values, and have only one child.
 */
final class HoleNode extends Node {
    private Node child;

    HoleNode() {
        super();
    }

    public boolean isTwoNode() {
        return false;
    }

    public Node sibling() {
        if (parent() != null) {
            return parent().leftChild() == this ? parent().rightChild(): parent().leftChild();
        }
        return null;
    }

    @Override
    public void setLeftChild(Node leftChild) {
    }

    @Override
    public void removeChildren() {
        child = null;
    }


    @Override
    public void setRightChild(Node rightChild) {
    }

    public Node child() {
        return child;
    }

    public void setChild(Node child) {
        this.child = child;
    }
}
2-3树实现
/**
 *  A 2-3 tree is a balanced search tree where each node can have either two children and one value (2-node),
 * or three children and two values (3-node).
 *
 * References:
 * http://scienceblogs.com/goodmath/2009/03/two-three_trees_a_different_ap.php
 * http://cs.wellesley.edu/~cs230/spring07/2-3-trees.pdf
 *
 *
 * Author: Sergejs Melderis ([email protected])
 */


package TwoThreeTree;


import java.util.*;






@SuppressWarnings("unchecked")
public class TwoTreeTree<T extends Comparable> extends AbstractSet<T> implements SortedSet<T> {

    Node root;
    int size = 0;

    public boolean add(T value) {
        if (root == null)
            root = Node.newTwoNode(value);
        else {
            try {
                Node result = insert(value, root);
                if (result != null) {
                    root = result;
                }
            } catch (DuplicateException e) {
                return false;
            }
        }
        size ++;
        return true;
    }


    public boolean contains(T value) {
        return findNode(root, value) != null;
    }


    private Node findNode(Node node, T value) {
        if (node == null) return null;

        if (node.isThreeNode()) {
            int leftComp = value.compareTo(node.leftVal());
            int rightComp = value.compareTo(node.rightVal());
            if (leftComp == 0 || rightComp == 0) {
                return node;
            }
            if (leftComp < 0) {
                return findNode(node.leftChild(), value);
            } else if (rightComp < 0) {
                return findNode(node.middleChild(), value);
            } else {
                return findNode(node.rightChild(), value);
            }
        } else {
            int comp = value.compareTo(node.val());
            if (comp == 0)
                return node;
            if (comp < 0)
                return findNode(node.leftChild(), value);
            else
                return findNode(node.rightChild(), value);
        }
    }


    private static final class DuplicateException extends RuntimeException {};
    private static final DuplicateException DUPLICATE = new DuplicateException();


    private Node insert(T value, Node node) throws DuplicateException {
        Node returnValue = null;
        if (node.isTwoNode()) {
            int comp = value.compareTo(node.val());

            if (node.isTerminal()) {
                if (comp == 0)
                    throw DUPLICATE;
                Node thnode = Node.newThreeNode(value, node.val());
                Node parent = node.parent();
                if (parent != null)
                    parent.replaceChild(node, thnode);
                else
                    root = thnode;
            } else {
                if (comp < 0) {
                    Node result = insert(value, node.leftChild());
                    if (result != null) {
                        Node threeNode = Node.newThreeNode(result.val(), node.val());
                        threeNode.setRightChild(node.rightChild());
                        threeNode.setMiddleChild(result.rightChild());
                        threeNode.setLeftChild(result.leftChild());
                        if (node.parent() != null) {
                            node.parent().replaceChild(node, threeNode);
                        } else {
                            root = threeNode;
                        }
                        unlinkNode(node);
                    }
                } else if (comp > 0) {
                    Node result = insert(value, node.rightChild());
                    if (result != null) {
                        Node threeNode = Node.newThreeNode(result.val(), node.val());
                        threeNode.setLeftChild(node.leftChild());
                        threeNode.setMiddleChild(result.leftChild());
                        threeNode.setRightChild(result.rightChild());
                        if (node.parent() != null) {
                            node.parent().replaceChild(node, threeNode);
                        } else {
                            root = threeNode;
                        }
                        unlinkNode(node);
                    }
                } else {
                    throw DUPLICATE;
                }
            }

        } else { // three node
            Node threeNode = node;

            int leftComp = value.compareTo(threeNode.leftVal());
            int rightComp = value.compareTo(threeNode.rightVal());
            if (leftComp == 0 || rightComp == 0) {
                throw DUPLICATE;
            }

            if (threeNode.isTerminal()) {

                returnValue = splitNode(threeNode, value);

            } else {
                if (leftComp < 0) {
                    Node result = insert(value, threeNode.leftChild());
                    if (result != null) {
                        returnValue = splitNode(threeNode, result.val());
                        returnValue.leftChild().setLeftChild(result.leftChild());
                        returnValue.leftChild().setRightChild(result.rightChild());
                        returnValue.rightChild().setLeftChild(threeNode.middleChild());
                        returnValue.rightChild().setRightChild((threeNode.rightChild()));
                        unlinkNode(threeNode);
                    }
                } else if (rightComp < 0) {
                    Node result = insert(value, threeNode.middleChild());
                    if (result != null) {
                        returnValue = splitNode(threeNode, result.val());
                        returnValue.leftChild().setLeftChild(threeNode.leftChild());
                        returnValue.leftChild().setRightChild(result.leftChild());
                        returnValue.rightChild().setLeftChild(result.rightChild());
                        returnValue.rightChild().setRightChild(threeNode.rightChild());
                        unlinkNode(threeNode);
                    }
                } else  {
                    Node result = insert(value, threeNode.rightChild());
                    if (result != null) {
                        returnValue = splitNode(threeNode, result.val());
                        returnValue.leftChild().setLeftChild(threeNode.leftChild());
                        returnValue.leftChild().setRightChild(threeNode.middleChild());
                        returnValue.rightChild().setLeftChild(result.leftChild());
                        returnValue.rightChild().setRightChild(result.rightChild());
                        unlinkNode(threeNode);
                    }
                } 
            }
        }
        return returnValue;
    }



    public boolean remove(T value) {
        if (value == null)
            return false;
      //  System.out.println("removing " + value);
        Node node = findNode(root, value);
        if (node == null)
            return false;

        HoleNode hole = null;
        Node terminalNode;
        T holeValue;
        if (node.isTerminal()) {
            terminalNode = node;
            holeValue = value;
        } else {
            // Replace by successor.
            if (node.isThreeNode()) {
                if (node.leftVal().equals(value)) {
                    Node pred = predecessor(node, value);
                    holeValue = pred.isThreeNode() ? pred.rightVal() : pred.val();
                    node.setLeftVal(holeValue);
                    terminalNode = pred;
                } else {
                    Node succ = successor(node, value);
                    holeValue = succ.isThreeNode() ? succ.leftVal() : succ.val();
                    node.setRightVal(holeValue);
                    terminalNode = succ;
                }
            } else {
                Node succ = successor(node, value);
                holeValue = succ.isThreeNode() ? succ.leftVal() : succ.val();
                node.setVal(holeValue);
                terminalNode = succ;
            }
        }

        assert terminalNode.isTerminal();

        if (terminalNode.isThreeNode()) {
            // Easy case. Replace 3-node by 2-node
            T val = terminalNode.leftVal().equals(holeValue) ? terminalNode.rightVal() : terminalNode.leftVal();
            Node twoNode = Node.newTwoNode(val);
            if (terminalNode.parent() != null) {
                terminalNode.parent().replaceChild(terminalNode, twoNode);
            } else {
                root = twoNode;
            }
        } else {
            if (terminalNode.parent() != null) {
                hole = Node.newHole();
                terminalNode.parent().replaceChild(terminalNode, hole);
            } else {
                root = null;
            }
        }

        // For description of each case see
        // "2-3 Tree Deletion: Upward Phase" in  http://cs.wellesley.edu/~cs230/spring07/2-3-trees.pdf
        while (hole != null) {
            // Case 1. The hole has a 2-node as parent and 2-node as sibling.
            if (hole.parent().isTwoNode() && hole.sibling().isTwoNode()) {
                //System.out.println("Case 1");
                Node parent = hole.parent();
                Node sibling = hole.sibling();

                Node threeNode = Node.newThreeNode(parent.val(), sibling.val());
                if (parent.leftChild() == hole) {
                    threeNode.setLeftChild(hole.child());
                    threeNode.setMiddleChild(sibling.leftChild());
                    threeNode.setRightChild(sibling.rightChild());
                } else {
                    threeNode.setLeftChild(sibling.leftChild());
                    threeNode.setMiddleChild(sibling.rightChild());
                    threeNode.setRightChild(hole.child());
                }

                if (parent.parent() == null) {
                    unlinkNode(hole);
                    root = threeNode;
                    hole = null;
                } else {
                    hole.setChild(threeNode);
                    parent.parent().replaceChild(parent, hole);
                }
                unlinkNode(parent);
                unlinkNode(sibling);

            }
            // Case 2. The hole has a 2-node as parent and 3-node as sibling.
            else if (hole.parent().isTwoNode() && hole.sibling().isThreeNode()) {
                //System.out.println("Case 2 ");
                Node parent = hole.parent();
                Node sibling = hole.sibling();

                if (parent.leftChild() == hole) {
                    Node leftChild = Node.newTwoNode(parent.val());
                    Node rightChild = Node.newTwoNode(sibling.rightVal());
                    parent.setVal(sibling.leftVal());
                    parent.replaceChild(hole, leftChild);
                    parent.replaceChild(sibling, rightChild);
                    leftChild.setLeftChild(hole.child());
                    leftChild.setRightChild(sibling.leftChild());
                    rightChild.setLeftChild(sibling.middleChild());
                    rightChild.setRightChild(sibling.rightChild());
                } else {
                    Node leftChild = Node.newTwoNode(sibling.leftVal());
                    Node rightChild = Node.newTwoNode(parent.val());
                    parent.setVal(sibling.rightVal());
                    parent.replaceChild(sibling, leftChild);
                    parent.replaceChild(hole, rightChild);
                    leftChild.setLeftChild(sibling.leftChild());
                    leftChild.setRightChild(sibling.middleChild());
                    rightChild.setLeftChild(sibling.rightChild());
                    rightChild.setRightChild(hole.child());
                }
                unlinkNode(hole);
                unlinkNode(sibling);
                hole = null;
            }

            // Case 3. The hole has a 3-node as parent and 2-node as sibling.
            else if (hole.parent().isThreeNode()) {
                Node parent = hole.parent();

                // subcase (a), hole is in the middle
                if (parent.middleChild() == hole && parent.leftChild().isTwoNode()) {
                    //System.out.println("Case 3 (a) hole in the middle");
                    Node leftChild = parent.leftChild();
                    Node newParent = Node.newTwoNode(parent.rightVal());
                    Node newLeftChild = Node.newThreeNode(leftChild.val(), parent.leftVal());
                    newParent.setLeftChild(newLeftChild);
                    newParent.setRightChild(parent.rightChild());
                    if (parent != root) {
                        parent.parent().replaceChild(parent, newParent);
                    } else {
                        root = newParent;
                    }

                    newLeftChild.setLeftChild(leftChild.leftChild());
                    newLeftChild.setMiddleChild(leftChild.rightChild());
                    newLeftChild.setRightChild(hole.child());

                    unlinkNode(parent);
                    unlinkNode(leftChild);
                    unlinkNode(hole);
                    hole = null;
                }
                // subcase (b), hole is in the middle
                else if (parent.middleChild() == hole && parent.rightChild().isTwoNode()) {
                    //System.out.println("Case 3(b) hole in the middle");
                    Node rightChild = parent.rightChild();
                    Node newParent = Node.newTwoNode(parent.leftVal());
                    Node newRightChild = Node.newThreeNode(parent.rightVal(), rightChild.val());
                    newParent.setLeftChild(parent.leftChild());
                    newParent.setRightChild(newRightChild);
                    if (parent != root) {
                        parent.parent().replaceChild(parent, newParent);
                    } else {
                        root = newParent;
                    }
                    newRightChild.setLeftChild(hole.child());
                    newRightChild.setMiddleChild(rightChild.leftChild());
                    newRightChild.setRightChild(rightChild.rightChild());
                    unlinkNode(parent);
                    unlinkNode(rightChild);
                    unlinkNode(hole);
                    hole = null;
                }
                else if (parent.middleChild().isTwoNode()) {
                    Node middleChild = parent.middleChild();

                    // subcase (a). hole is the left child.
                    if (parent.leftChild() == hole) {
                        //System.out.println("Case 3 (a) hole is left child");
                        Node newParent = Node.newTwoNode(parent.rightVal());
                        Node leftChild = Node.newThreeNode(parent.leftVal(), middleChild.val());
                        newParent.setLeftChild(leftChild);
                        newParent.setRightChild(parent.rightChild());
                        if (parent != root) {
                            parent.parent().replaceChild(parent, newParent);
                        } else {
                            root = newParent;
                        }

                        leftChild.setLeftChild(hole.child());
                        leftChild.setMiddleChild(middleChild.leftChild());
                        leftChild.setRightChild(middleChild.rightChild());

                        unlinkNode(parent);
                        unlinkNode(hole);
                        unlinkNode(middleChild);
                        hole = null;
                    }
                    // subcase (a). hole is the right child.
                    else if (parent.rightChild() == hole) {
                        //System.out.println("Case 3 (a) hole is right child");
                        Node newParent = Node.newTwoNode(parent.leftVal());
                        Node rightChild = Node.newThreeNode(middleChild.val(), parent.rightVal());
                        newParent.setRightChild(rightChild);
                        newParent.setLeftChild(parent.leftChild());
                        if (parent != root) {
                            parent.parent().replaceChild(parent, newParent);
                        } else {
                            root = newParent;
                        }

                        rightChild.setLeftChild(middleChild.leftChild());
                        rightChild.setMiddleChild(middleChild.rightChild());
                        rightChild.setRightChild(hole.child());

                        unlinkNode(parent);
                        unlinkNode(hole);
                        unlinkNode(middleChild);
                        hole = null;
                    }
                }

                // Case 4. The hole has a 3-node as parent and 3-node as sibling.

                else if (parent.middleChild().isThreeNode()) {
                    Node middleChild = parent.middleChild();
                    // subcase (a) hole is the left child
                    if (hole == parent.leftChild()) {
                        //System.out.println("Case 4 (a) hole is left child");
                        Node newLeftChild = Node.newTwoNode(parent.leftVal());
                        Node newMiddleChild = Node.newTwoNode(middleChild.rightVal());
                        parent.setLeftVal(middleChild.leftVal());
                        parent.setLeftChild(newLeftChild);
                        parent.setMiddleChild(newMiddleChild);
                        newLeftChild.setLeftChild(hole.child());
                        newLeftChild.setRightChild(middleChild.leftChild());
                        newMiddleChild.setLeftChild(middleChild.middleChild());
                        newMiddleChild.setRightChild(middleChild.rightChild());

                        unlinkNode(hole);
                        unlinkNode(middleChild);
                        hole = null;
                    }
                    // subcase (b) hole is the right child
                    else if (hole == parent.rightChild()) {
                       // System.out.println("Case 4 (b) hole is right child");
                        Node newMiddleChild = Node.newTwoNode(middleChild.leftVal());
                        Node newRightChild = Node.newTwoNode(parent.rightVal());
                        parent.setRightVal(middleChild.rightVal());
                        parent.setMiddleChild(newMiddleChild);
                        parent.setRightChild(newRightChild);
                        newMiddleChild.setLeftChild(middleChild.leftChild());
                        newMiddleChild.setRightChild(middleChild.middleChild());
                       // newMiddleChild.setParent(middleChild.middleChild());
                        newRightChild.setLeftChild(middleChild.rightChild());
                        newRightChild.setRightChild(hole.child());

                        unlinkNode(hole);
                        unlinkNode(middleChild);
                        hole = null;

                    } else if (hole == parent.middleChild() && parent.leftChild().isThreeNode()) {
                       // System.out.println("Case 4 (a) hole is middle child, left is 3-node");
                        Node leftChild = parent.leftChild();
                        Node newLeftChild = Node.newTwoNode(leftChild.leftVal());
                        Node newMiddleChild = Node.newTwoNode(parent.leftVal());
                        parent.setLeftVal(leftChild.rightVal());
                        parent.setLeftChild(newLeftChild);
                        parent.setMiddleChild(newMiddleChild);
                        newLeftChild.setLeftChild(leftChild.leftChild());
                        newLeftChild.setRightChild(leftChild.middleChild());
                        newMiddleChild.setLeftChild(leftChild.rightChild());
                        newMiddleChild.setRightChild(hole.child());

                        unlinkNode(hole);
                        unlinkNode(leftChild);
                        hole = null;
                    } else {
                       assert  (hole == parent.middleChild() && parent.rightChild().isThreeNode());
                       // System.out.println("Case 4 (b) hole is middle child, right is 3-node");
                        Node rightChild = parent.rightChild();
                        Node newRightChild = Node.newTwoNode(rightChild.rightVal());
                        Node newMiddleChild = Node.newTwoNode(parent.rightVal());
                        parent.setRightVal(rightChild.leftVal());
                        parent.setMiddleChild(newMiddleChild);
                        parent.setRightChild(newRightChild);
                        newRightChild.setRightChild(rightChild.rightChild());
                        newRightChild.setLeftChild(rightChild.middleChild());
                        newMiddleChild.setRightChild(rightChild.leftChild());
                        newMiddleChild.setLeftChild(hole.child());

                        unlinkNode(hole);
                        unlinkNode(rightChild);
                        hole = null;
                    }
                }

            }
        }

        size--;
        return true;
    }


    private void unlinkNode(Node node) {
        node.removeChildren();
        node.setParent(null);
    }


    private Node successor(Node node, T value) {
        if (node == null)
            return null;

        if (!node.isTerminal()) {
            Node p;
            if (node.isThreeNode() && node.leftVal().equals(value)) {
                p = node.middleChild();
            } else {
                p = node.rightChild();
            }
            while (p.leftChild() != null) {
                p = p.leftChild();
            }
            return p;
        } else {
            Node p = node.parent();
            if (p == null) return null;

            Node ch = node;
            while (p != null && ch == p.rightChild()) {
                ch = p;
                p = p.parent();
            }
            return p != null ? p : null;
        }
    }

    private Node predecessor(Node node, T value) {
        if (node == null)
            return null;

        Node p;
        if (!node.isTerminal()) {
            if (node.isThreeNode() && node.rightVal().equals(value)) {
                p = node.middleChild();
            } else {
                p = node.leftChild();
            }

            while (p.rightChild() != null) {
                p = p.rightChild();
            }
            return p;
        } else {
            throw new UnsupportedOperationException("Implement predecessor parent is not terminal node");
        }

    }


    private Node splitNode(Node threeNode, T value) {
        T min;
        T max;
        T middle;
        if (value.compareTo(threeNode.leftVal()) < 0) {
            min = value;
            middle = threeNode.leftVal();
            max = threeNode.rightVal();
        } else if (value.compareTo(threeNode.rightVal()) < 0) {
            min = threeNode.leftVal();
            middle = value;
            max = threeNode.rightVal();
        } else {
            min = threeNode.leftVal();
            max = value;
            middle = threeNode.rightVal();
        }

        Node parent = Node.newTwoNode(middle);
        parent.setLeftChild(Node.newTwoNode(min));
        parent.setRightChild(Node.newTwoNode(max));
        return parent;
    }


    public interface Function<T> {
        public void apply(T t);
    }


    /**
     * Preorder search.
     * Visit the node.
     * Visit the left subtree
     * Visit the middle subtree

     */
    public void preOrder(Node node, Function<T> f) {
        if (node.isThreeNode()) {
            f.apply(node.leftVal());
            f.apply(node.rightVal());
        }
        if (node.isTerminal())
            return;


        preOrder(node.leftChild(), f);
        if (node.isThreeNode()) {
            assert node.middleChild() != null;
            preOrder(node.middleChild(), f);
        }
        preOrder(node.rightChild(), f);
    }



    public  void inorderSearch(Node node, Function<T> func) {
        if (node == null)
            return;
        inorderSearch(node.leftChild(), func);
        if (node.isThreeNode()) {
            Node threeNode = node;
            func.apply(threeNode.leftVal());
            inorderSearch(threeNode.middleChild(), func);
            func.apply(threeNode.rightVal());
        } else {
            func.apply(node.val());
        }
        inorderSearch(node.rightChild(), func);
    }


    // Set operations.


    /**
     * The returning iterator does not support remove.
     */
    public Iterator iterator() {

        return new Iterator() {
            Node nextNode;

            // Stack to keep three nodes
            Deque> threeNodes = new ArrayDeque>();
            T next;
            {
                Node node = root;
                while(node != null && node.leftChild() != null) {
                    node = node.leftChild();
                }
                nextNode = node;
            }
            public boolean hasNext() {
                return next != null || nextNode != null;
            }

            public T next() {
                T prev;
                if (next != null) {
                    prev = next;
                    next = null;
                    nextNode = successor(nextNode, prev);
                    return prev;
                }
                if (nextNode.isThreeNode()) {
                    if (nextNode.isTerminal()) {
                        next = nextNode.rightVal();
                        prev = nextNode.leftVal();
                    } else {
                        if (threeNodes.peekFirst() == nextNode) {
                            threeNodes.pollFirst();
                            prev = nextNode.rightVal();
                            nextNode = successor(nextNode, prev);
                        } else {
                            prev = nextNode.leftVal();
                            threeNodes.addFirst(nextNode);
                            nextNode = successor(nextNode, prev);
                        }
                    }
                } else {
                    prev = nextNode.val();
                    nextNode = successor(nextNode, prev);
                }
                return prev;
            }


            public void remove() {
               throw new UnsupportedOperationException();
            }
        };

    }





    public Comparator super T> comparator() {
        return null;
    }

    public SortedSet subSet(T fromElement, T toElement) {
        throw new UnsupportedOperationException();
    }

    public SortedSet headSet(T toElement) {
        throw new UnsupportedOperationException();
    }


    public SortedSet tailSet(T fromElement) {
        throw new UnsupportedOperationException();
    }

    public T first() {
        Node node = root;
        while (node.leftChild() != null) {
            node = node.leftChild();
        }
        return node.isThreeNode() ? node.leftVal() : node.val();
    }

    public T last() {
        Node node = root;
        while (node.rightChild() != null) {
            node = node.rightChild();
        }
        return node.isThreeNode() ? node.rightVal() : node.val();
    }

    public int size() {
        return size;
    }


    @Override
    public boolean contains(Object o) {
        try {
            return contains ((T) o);
        } catch (ClassCastException e) {
            return false;
        }
    }

    @Override
    public boolean remove(Object o) {
        try {
            return remove((T) o);
        } catch (ClassCastException e) {
            return false;
        }
    }

    @Override
    public void clear() {
        root = null;
    }


    @Override
    public Object[] toArray() {
        final Object arr[] = new Object[size];
        inorderSearch(root, new Function() {
            int index = 0;

            public void apply(Object t) {
                arr[index++] = (T) t;
            }
        });
        return arr;
    }

    @Override
    public  T[] toArray(T[] a) {
        T[] r = a.length >= size ? a :
                (T[]) java.lang.reflect.Array
                        .newInstance(a.getClass().getComponentType(), size);

        return _toArray(r);
    }


    public  T[]  _toArray(final T[] a) {
        inorderSearch(root, new Function() {
            int index = 0;

            public void apply(Object t) {
                a[index++] = (T) t;
            }
        });
        return a;
    }

    @Override
    public boolean removeAll(Collection> c) {
        boolean removed = false;
        for (Object o : c) {
            removed |= remove(o);
        }
        return removed;
    }




    @Override
    public String toString() {
        if (size == 0)
            return "[]";
        final StringBuilder sb = new StringBuilder("[");
        inorderSearch(root, new Function<T>() {
            public void apply(T t) {
                sb.append(t);
                sb.append(", ");
            }
        });
        sb.deleteCharAt(sb.length() - 1);
        sb.deleteCharAt(sb.length() - 1);
        sb.append("]");
        return sb.toString();
    }

}

你可能感兴趣的:(java数据结构)