- 【SequoiaDB】4 巨杉数据库SequoiaDB整体架构
Alen_Liu_SZ
巨杉数据库SequoiaDB架构编目节点协调节点数据节点巨杉数据库
1整体架构SequoiaDB巨杉数据库作为分布式数据库,由数据库存储引擎与数据库实例两大模块组成。其中,数据库存储引擎模块是数据存储的核心,负责提供整个数据库的读写服务、数据的高可用与容灾、ACID与发你不是事务等全部核心数据服务能力。数据库实例模块则作为协议与语法的适配层,用户可根据需要创建包括MySQL、PostgreSQL与SparkSQL在内的结构化数据实例;支持JSON语法的MongoD
- App Store暗藏虚假抖音,内含间谍软件窃取照片和加密货币
FreeBuf-
TikTokAppStoreiOSAndroid
卡巴斯基网络安全研究人员近日发现名为SparkKitty的新型间谍软件活动,该恶意程序已感染苹果AppStore和谷歌Play官方商店的多个应用。这款间谍软件旨在窃取用户移动设备中的所有图片,疑似专门搜寻加密货币相关信息。该攻击活动自2024年初开始活跃,主要针对东南亚和中国用户。伪装流行应用渗透设备SparkKitty间谍软件通过看似无害的应用程序渗透设备,通常伪装成TikTok等流行应用的修改
- 存得快查得准,但就是算不动?试试时序数据库 TDengine × Spark 的组合拳
每个工程师可能都遇到过类似场景:时序数据沉淀在数据库中,格式规范、查询快捷,但当任务升级——比如滑窗聚合、多源拼接、机器学习训练——一些业务可能就需要更强的计算能力和更灵活的分析工具。TDengine专注于高效存储与极速查询,而在数据“算力”层面,我们选择了更强的伙伴。现在,TDengine正式开放与ApacheSpark的无缝集成通道。一个是高性能、低成本的时序数据库,一个是横扫大数据世界的分析
- Spark Streaming 与 Flink 实时数据处理方案对比与选型指南
浅沫云归
后端技术栈小结spark-streamingflinkreal-time
SparkStreaming与Flink实时数据处理方案对比与选型指南实时数据处理在互联网、电商、物流、金融等领域均有大量应用,面对海量流式数据,SparkStreaming和Flink成为两大主流开源引擎。本文基于生产环境需求,从整体架构、编程模型、容错机制、性能表现、实践案例等维度进行深入对比,并给出选型建议。一、问题背景介绍业务场景日志实时统计与告警用户行为实时画像实时订单或交易监控流式ET
- Spark教程3:SparkSQL最全介绍
Cachel wood
大数据开发spark大数据分布式计算机网络AHP需求分析
文章目录SparkSQL最全介绍一、SparkSQL概述二、SparkSession:入口点三、DataFrame基础操作四、SQL查询五、SparkSQL函数六、与Hive集成七、数据源操作八、DataFrame与RDD互转九、高级特性十、性能优化十一、Catalyst优化器十二、SparkSQL应用场景十三、常见问题与解决方法SparkSQL最全介绍一、SparkSQL概述SparkSQL是A
- Spark教程1:Spark基础介绍
Cachel wood
大数据开发spark大数据分布式计算机网络数据库数据仓库
文章目录一、Spark是什么?二、Spark的核心优势三、Spark的核心概念四、Spark的主要组件五、Spark的部署模式六、Spark与Hadoop的关系七、Spark应用开发流程八、Spark的应用场景九、Spark版本更新与社区一、Spark是什么?ApacheSpark是一个开源的分布式大数据处理引擎,最初由加州大学伯克利分校AMPLab开发,2013年捐赠给Apache软件基金会,如
- 讯飞星火(iFlytek Spark):科大讯飞打造的国产AI大模型平台
明似水
AI人工智能
1.产品概述讯飞星火(iFlytekSpark)是科大讯飞自主研发的认知大模型,定位于通用人工智能(AGI)平台,集成了文本生成、语言理解、知识问答、逻辑推理、数学计算、代码生成和多模态交互等核心能力。作为国内首批基于全国产算力平台训练的大模型,讯飞星火在中文理解、语音交互、数学推理等方面表现突出,并持续对标国际顶尖模型(如GPT-4、Gemini)。核心优势全国产化:基于华为昇腾AI芯片和“飞星
- 基于Hadoop大数据分析应用场景与实战
跨过山河大海
一、Hadoop的应用业务分析大数据是不能用传统的计算技术处理的大型数据集的集合。它不是一个单一的技术或工具,而是涉及的业务和技术的许多领域。目前主流的三大分布式计算系统分别为:Hadoop、Spark和Strom:Hadoop当前大数据管理标准之一,运用在当前很多商业应用系统。可以轻松地集成结构化、半结构化甚至非结构化数据集。Spark采用了内存计算。从多迭代批处理出发,允许将数据载入内存作反复
- 深度剖析无感刷新Token:领码SPARK平台赋能微服务认证的智能实践
领码科技
低代码实战篇无感刷新Token领码SPARK微服务认证AI安全双Token机制
摘要在现代微服务架构与数字化转型大潮中,用户身份认证的连续性与安全性尤为关键。无感刷新Token技术通过智能的双Token机制,确保用户访问凭证在不打扰用户的前提下自动续期,避免因Token过期导致的频繁登录中断。本文结合领码SPARK融合平台的iPaaS和aPaaS优势,深刻解析无感刷新Token的实现原理、典型场景、安全风险及AI赋能智能防护,系统阐述实现无感刷新Token的最佳实践。通过流程
- Spark 之 UT
zhixingheyi_tian
sparkspark大数据分布式
AQEOFFpartitionpruninginbroadcasthashjoinswithaliases==OptimizedLogicalPlan==Project[date_id#5283,pid#5281,sid#5282]+-JoinInner,(si
- Spark eventlog 、Event、SparkListener
zhixingheyi_tian
sparkspark大数据分布式
SparkListenerSQLExecutionStartcaseclassSparkListenerSQLExecutionStart(executionId:Long,//iftheexecutionisaroot,thenrootExecutionId==executionId//iftheeventisparsedfromtheeventlogthatgeneratedbySparkno
- 图书《数据资产管理核心技术与应用》核心章节节选-3.1.2. 从Spark 执行计划中获取数据血缘
张永清-老清
大数据spark大数据分布式
本文节选自清华大学出版社出版的图书《数据资产管理核心技术与应用》,作者为张永清等著。从Spark执行计划中获取数据血缘->关注清哥聊技术公众号,了解更多技术文章因为数据处理任务会涉及到数据的转换和处理,所以从数据任务中解析血缘也是获取数据血缘的渠道之一,Spark是大数据中数据处理最常用的一个技术组件,既可以做实时任务的处理,也可以做离线任务的处理。Spark在执行每一条SQL语句的时候,都会生成
- Spark 之 QueryPlan
zhixingheyi_tian
sparkspark大数据分布式
sameResultsrc/main/scala/org/apache/spark/sql/catalyst/plans/QueryPlan.scala/***Returnstruewhenthegivenqueryplanwillreturnthesameresultsasthisqueryplan.**Sinceitslikelyundecidabletogenerallydeterminei
- Python与大数据:Spark和PySpark实战教程
天天进步2015
python大数据pythonspark
引言在大数据时代,数据处理和分析能力成为核心竞争力。ApacheSpark作为新一代大数据计算引擎,以其高性能、易用性和强大的生态系统,成为数据工程师和分析师的首选工具。而PySpark作为Spark的Python接口,让Python开发者能够轻松驾驭大规模数据处理。本教程将带你系统了解Spark与PySpark的核心原理、环境搭建、典型应用场景及实战案例,助你快速上手大数据分析。目录Spark简
- 现代数据湖架构全景解析:存储、表格式、计算引擎与元数据服务的协同生态
讲文明的喜羊羊拒绝pua
大数据架构数据湖SparkIcebergAmoro对象存储
本文全面剖析现代数据湖架构的核心组件,深入探讨对象存储(OSS/S3)、表格式(Iceberg/Hudi/DeltaLake)、计算引擎(Spark/Flink/Presto)及元数据服务(HMS/Amoro)的协作关系,并提供企业级选型指南。一、数据湖架构演进与核心价值数据湖架构演进历程现代数据湖核心价值矩阵维度传统数仓现代数据湖存储成本高(专有硬件)低(对象存储)数据时效性小时/天级分钟/秒级
- 通过CDH安装Spark的详细指南
暴躁哥
大数据技术spark大数据分布式
通过CDH安装Spark的详细指南简介ClouderaDistributionofHadoop(CDH)是一个企业级的大数据平台,它集成了多个开源组件,包括Hadoop、Spark、Hive等。本文将详细介绍如何通过CDH安装和配置Spark。前提条件在开始安装之前,请确保满足以下条件:已安装CDH集群具有管理员权限所有节点之间网络互通系统时间同步足够的磁盘空间(建议至少预留20GB)安装步骤1.
- order、sort、distribute和cluster by(Spark/Hive)
有数的编程笔记
Spark/Hivesparkhive大数据
1.abstractORDERBY:完整查询结果的全局行排序。与SORTBY、CLUSTERBY、DISTRIBUTEBY互斥,不能同时使用。示例SELECT*FROMtable_nameORDERBYcolumn_name;SORTBY:只在每个分区内排序,局部排序结果不是全局有序。与ORDERBY、CLUSTERBY互斥,不能同时指定。示例SELECT*FROMtable_nameSORTBY
- 合并小文件汇总(Hive/Spark)
有数的编程笔记
Spark/Hivehivesparkhadoop
合并小文件的原因:过多的小文件会导致HDFS上元数据负载增加。并且小文件也会导致计算性能下降。1.使用hive时1.1.使用hive.merge参数,开启文件合并--控制在map阶段结束后合并输出的小文件,默认值为trueSEThive.merge.mapfiles=true;--控制在reduce阶段结束后合并输出小文件,默认值为falseSEThive.merge.mapredfiles=tr
- 基于pyspark的北京历史天气数据分析及可视化_离线
大数据CLUB
spark数据分析可视化数据分析数据挖掘hadoop大数据spark
基于pyspark的北京历史天气数据分析及可视化项目概况[]点这里,查看所有项目[]数据类型北京历史天气数据开发环境centos7软件版本python3.8.18、hadoop3.2.0、spark3.1.2、mysql5.7.38、scala2.12.18、jdk8开发语言python开发流程数据上传(hdfs)->数据分析(spark)->数据存储(mysql)->后端(flask)->前端(
- Spark底层原理详细解析
JavaShark
sparkbigdatahadoop
Spark简介ApacheSpark是用于大规模数据处理的统一分析引擎,基于内存计算,提高了在大数据环境下数据处理的实时性,同时保证了高容错性和高可伸缩性,允许用户将Spark部署在大量硬件之上,形成集群。Spark源码从1.x的40w行发展到现在的超过100w行,有1400多位大牛贡献了代码。整个Spark框架源码是一个巨大的工程。下面我们一起来看下spark的底层执行原理。Spark运行流程具
- Java EDW三剑客:如何让数据从“沼泽”变身“报告神器”?手把手教你玩转企业数据仓库!
墨瑾轩
Java乐园java数据仓库开发语言
关注墨瑾轩,带你探索编程的奥秘!超萌技术攻略,轻松晋级编程高手技术宝库已备好,就等你来挖掘订阅墨瑾轩,智趣学习不孤单即刻启航,编程之旅更有趣一、你的EDW在“数据沼泽”里?是时候请个“数据炼金术士”了!“数据散落在10个系统里,生成月报要熬3个通宵?”——别慌!今天我们就用JDBC+ApacheSpark+Thymeleaf三剑客,教你如何让Java在EDW中将“数据沼泽”炼成“报告神器”!从“数
- 基于pyspark的北京历史天气数据分析及可视化_实时
大数据CLUB
spark数据分析可视化数据分析数据挖掘sparkhadoop大数据
基于pyspark的北京历史天气数据分析及可视化项目概况[]点这里,查看所有项目[]数据类型北京历史天气数据开发环境centos7软件版本python3.8.18、hadoop3.2.0、spark3.1.2、mysql5.7.38、scala2.12.18、jdk8、kafka2.8.2开发语言python开发流程数据上传(hdfs)->数据分析(spark)->数据写kafka(python)
- Pyspark中的int
闯闯桑
pythonsparkpandas大数据
在PySpark中,整数类型(int)与Python或Pandas中的int有所不同,因为它基于SparkSQL的数据类型系统。以下是PySpark中整数类型的详细说明:1.PySpark的整数类型PySpark主要使用IntegerType(32位)和LongType(64位)表示整数,对应SQL中的INT和BIGINT:PySpark类型SQL类型位数取值范围占用存储IntegerTypeIN
- Python 工程师迈向大数据时代: Hadoop 与 Spark 框架深度解析与实战指南
清水白石008
pythonPython题库大数据pythonhadoop
Python工程师迈向大数据时代:Hadoop与Spark框架深度解析与实战指南引言亲爱的Python工程师们,欢迎来到大数据时代!在这个数据驱动的时代,海量数据如同奔腾不息的河流,蕴藏着前所未有的价值。然而,传统的数据处理工具在面对TB甚至PB级别的数据时,往往显得力不从心。如何高效地处理、分析和挖掘这些海量数据,成为了现代软件工程师,特别是Python工程师们必须掌握的关键技能。幸运的是,大数
- 实战Spark从入门到精通(五):Spark开发实操,先搞定Spark集群规划!
元飞聊技术
实战Spark从入门到精通spark大数据分布式linuxcentos
系列文章目录实战Spark从入门到精通(一):一文带你全面了解Spark大数据处理框架实战Spark从入门到精通(二):Spark急速上手,给小白的3分钟入门指南实战Spark从入门到精通(三):深入理解SparkRDD,大数据处理的核心引擎实战Spark从入门到精通(四):揭秘Spark架构,这才是Spark速度快的真正秘密!文章目录系列文章目录前言Spark集群规划,先搞定Spark基础运行环
- 【Spark征服之路-2.9-Spark-Core编程(五)】
RDD行动算子:行动算子就是会触发action的算子,触发action的含义就是真正的计算数据。1.reduce➢函数签名defreduce(f:(T,T)=>T):T➢函数说明聚集RDD中的所有元素,先聚合分区内数据,再聚合分区间数据valrdd:RDD[Int]=sc.makeRDD(List(1,2,3,4))valreduceResult:Int=rdd.reduce(_+_)printl
- Spark Streaming 原理与代码实例讲解
AI智能应用
AI大模型应用入门实战与进阶Python入门实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
SparkStreaming原理与代码实例讲解1.背景介绍1.1实时流数据处理的重要性在当今大数据时代,海量的数据正以前所未有的速度不断产生。传统的批处理模式已经无法满足实时性要求较高的应用场景,如实时推荐、实时欺诈检测等。因此,实时流数据处理技术应运而生,成为大数据领域的研究热点。1.2SparkStreaming的优势SparkStreaming是ApacheSpark生态系统中的一个重要组件
- pyspark底层浅析
lo_single
Sparksparkpython
pyspark底层浅析pyspark简介pyspark是Spark官方提供的API接口,同时pyspark也是Spark中的一个程序。在terminal中输入pyspark指令,可以打开python的shell,同时其中默认初始化了SparkConf和SparkContext在编写Spark应用的.py文件时,可以通过importpyspark引入该模块,并通过SparkConf对Spark的启动
- 方舟自建服务器物品叠加mod,10000倍物品叠加 -90%负重 V280
大奇鸭
方舟自建服务器物品叠加mod
MOD描述---------------------------------------------堆叠MOD增加+10.000(Ammo和Kibble+500)和-90%重量减少当你销毁结构时,物品可以正确堆叠弹弓,钓鱼竿和Jerky工作得很好。香草Engrams适用于砂浆和杵。请阅读说明堆叠mod需要按照mod列表(GameUserSettings.ini)的顺序尽可能高。工艺资源(Spark
- Python大数据处理中有哪些分布式计算框架?如何选择和使用?
代码小狂热者
python开发语言
一、引言随着大数据时代的来临,数据处理和分析已成为企业和个人不可或缺的一部分。Python,作为一种简洁、易读且功能强大的编程语言,在大数据处理领域具有广泛的应用。而在处理大数据时,分布式计算框架的选择和使用至关重要。本文将介绍Python大数据处理中常见的分布式计算框架,并探讨如何根据实际需求进行选择和使用。二、Python大数据处理中的分布式计算框架ApacheSparkApacheSpark
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理