首先,我们看下下面这段简短的代码:
public class GenericTest {
public static void main(String[] args) {
List list = new ArrayList();
list.add("qqyumidi");
list.add("corn");
list.add(100);
for (int i = 0; i < list.size(); i++) {
String name = (String) list.get(i); // 1
System.out.println("name:" + name);
}
}
}
定义了一个List类型的集合,先向其中加入了两个字符串类型的值,随后加入一个Integer类型的值。这是完全允许的,因为此时list默认的类型为Object类型。在之后的循环中,由于忘记了之前在list中也加入了Integer类型的值或其他编码原因,很容易出现类似于//1中的错误。因为编译阶段正常,而运行时会出现“java.lang.ClassCastException”异常。因此,导致此类错误编码过程中不易发现。
在如上的编码过程中,我们发现主要存在两个问题:
1.当我们将一个对象放入集合中,集合不会记住此对象的类型,当再次从集合中取出此对象时,改对象的编译类型变成了Object类型,但其运行时类型任然为其本身类型。
2.因此,//1处取出集合元素时需要人为的强制类型转化到具体的目标类型,且很容易出现“java.lang.ClassCastException”异常。
那么有没有什么办法可以使集合能够记住集合内元素各类型,且能够达到只要编译时不出现问题,运行时就不会出现“java.lang.ClassCastException”异常呢?答案就是使用泛型。
泛型,即“参数化类型”。一提到参数,最熟悉的就是定义方法时有形参,然后调用此方法时传递实参。那么参数化类型怎么理解呢?顾名思义,就是将类型由原来的具体的类型参数化,类似于方法中的变量参数,此时类型也定义成参数形式(可以称之为类型形参),然后在使用/调用时传入具体的类型(类型实参)。
看着好像有点复杂,首先我们看下上面那个例子采用泛型的写法。
public class GenericTest {
public static void main(String[] args) {
/*
List list = new ArrayList();
list.add("qqyumidi");
list.add("corn");
list.add(100);
*/
List list = new ArrayList();
list.add("qqyumidi");
list.add("corn");
//list.add(100); // 1 提示编译错误
for (int i = 0; i < list.size(); i++) {
String name = list.get(i); // 2
System.out.println("name:" + name);
}
}
}
采用泛型写法后,在//1处想加入一个Integer类型的对象时会出现编译错误,通过List,直接限定了list集合中只能含有String类型的元素,从而在//2处无须进行强制类型转换,因为此时,集合能够记住元素的类型信息,编译器已经能够确认它是String类型了。
结合上面的泛型定义,我们知道在List中,String是类型实参,也就是说,相应的List接口中肯定含有类型形参。且get()方法的返回结果也直接是此形参类型(也就是对应的传入的类型实参)。下面就来看看List接口的的具体定义:
public interface List<E> extends Collection<E> {
int size();
boolean isEmpty();
boolean contains(Object o);
Iterator iterator();
Object[] toArray();
T[] toArray(T[] a);
boolean add(E e);
boolean remove(Object o);
boolean containsAll(Collection> c);
boolean addAll(Collection extends E> c);
boolean addAll(int index, Collection extends E> c);
boolean removeAll(Collection> c);
boolean retainAll(Collection> c);
void clear();
boolean equals(Object o);
int hashCode();
E get(int index);
E set(int index, E element);
void add(int index, E element);
E remove(int index);
int indexOf(Object o);
int lastIndexOf(Object o);
ListIterator listIterator();
ListIterator listIterator(int index);
List subList(int fromIndex, int toIndex);
}
我们可以看到,在List接口中采用泛型化定义之后,
中的E表示类型形参,可以接收具体的类型实参,并且此接口定义中,凡是出现E的地方均表示相同的接受自外部的类型实参。
自然的,ArrayList作为List接口的实现类,其定义形式是:
public class ArrayList<E> extends AbstractList<E>
implements List<E>, RandomAccess, Cloneable, java.io.Serializable {
public boolean add(E e) {
ensureCapacityInternal(size + 1); // Increments modCount!!
elementData[size++] = e;
return true;
}
public E get(int index) {
rangeCheck(index);
checkForComodification();
return ArrayList.this.elementData(offset + index);
}
//...省略掉其他具体的定义过程
}
由此,我们从源代码角度明白了为什么//1处加入Integer类型对象编译错误,且//2处get()到的类型直接就是String类型了。
从上面的内容中,大家已经明白了泛型的具体运作过程。也知道了接口、类和方法也都可以使用泛型去定义,以及相应的使用。是的,在具体使用时,可以分为泛型接口、泛型类和泛型方法。
自定义泛型接口、泛型类和泛型方法与上述Java源码中的List、ArrayList类似。如下,我们看一个最简单的泛型类和方法定义:
public class GenericTest {
public static void main(String[] args) {
Box name = new Box("corn");
System.out.println("name:" + name.getData());
}
}
class Box {
private T data;
public Box() {
}
public Box(T data) {
this.data = data;
}
public T getData() {
return data;
}
}
在泛型接口、泛型类和泛型方法的定义过程中,我们常见的如T、E、K、V等形式的参数常用于表示泛型形参,由于接收来自外部使用时候传入的类型实参。那么对于不同传入的类型实参,生成的相应对象实例的类型是不是一样的呢?
public class GenericTest {
public static void main(String[] args) {
Box name = new Box("corn");
Box age = new Box(712);
System.out.println("name class:" + name.getClass()); // com.qqyumidi.Box
System.out.println("age class:" + age.getClass()); // com.qqyumidi.Box
System.out.println(name.getClass() == age.getClass()); // true
}
}
由此,我们发现,在使用泛型类时,虽然传入了不同的泛型实参,但并没有真正意义上生成不同的类型,传入不同泛型实参的泛型类在内存上只有一个,即还是原来的最基本的类型(本实例中为Box),当然,在逻辑上我们可以理解成多个不同的泛型类型。
究其原因,在于Java中的泛型这一概念提出的目的,导致其只是作用于代码编译阶段,在编译过程中,对于正确检验泛型结果后,会将泛型的相关信息擦出,也就是说,成功编译过后的class文件中是不包含任何泛型信息的。泛型信息不会进入到运行时阶段。
对此总结成一句话:泛型类型在逻辑上看以看成是多个不同的类型,实际上都是相同的基本类型。
接着上面的结论,我们知道,Box
和Box
实际上都是Box类型,现在需要继续探讨一个问题,那么在逻辑上,类似于Box
和Box
是否可以看成具有父子关系的泛型类型呢?
为了弄清这个问题,我们继续看下下面这个例子:
public class GenericTest {
public static void main(String[] args) {
Box name = new Box(99);
Box age = new Box(712);
getData(name);
//The method getData(Box) in the type GenericTest is
//not applicable for the arguments (Box)
getData(age); // 1
}
public static void getData(Box data){
System.out.println("data :" + data.getData());
}
}
我们发现,在代码//1处出现了错误提示信息:The method getData(Box
显然,通过提示信息,我们知道Box在逻辑上不能视为Box的父类。那么,原因何在呢?
public class GenericTest {
public static void main(String[] args) {
Box a = new Box(712);
Box b = a; // 1
Box f = new Box(3.14f);
b.setData(f); // 2
}
public static void getData(Box data) {
System.out.println("data :" + data.getData());
}
}
class Box {
private T data;
public Box() {
}
public Box(T data) {
setData(data);
}
public T getData() {
return data;
}
public void setData(T data) {
this.data = data;
}
}
这个例子中,显然//1和//2处肯定会出现错误提示的。在此我们可以使用反证法来进行说明。
假设Box
在逻辑上可以视为Box
的父类,那么//1和//2处将不会有错误提示了,那么问题就出来了,通过getData()方法取出数据时到底是什么类型呢?Integer? Float? 还是Number?且由于在编程过程中的顺序不可控性,导致在必要的时候必须要进行类型判断,且进行强制类型转换。显然,这与泛型的理念矛盾,因此,在逻辑上Box
不能视为Box
的父类。
好,那我们回过头来继续看“类型通配符”中的第一个例子,我们知道其具体的错误提示的深层次原因了。那么如何解决呢?总部能再定义一个新的函数吧。这和Java中的多态理念显然是违背的,因此,我们需要一个在逻辑上可以用来表示同时是Box
和Box
的父类的一个引用类型,由此,类型通配符应运而生。
类型通配符一般是使用 ? 代替具体的类型实参。注意了,此处是类型实参,而不是类型形参!且Box>
在逻辑上是Box
、Box
…等所有Box<具体类型实参>
的父类。由此,我们依然可以定义泛型方法,来完成此类需求。
public class GenericTest {
public static void main(String[] args) {
Box name = new Box("corn");
Box age = new Box(712);
Box number = new Box(314);
getData(name);
getData(age);
getData(number);
}
public static void getData(Box> data) {
System.out.println("data :" + data.getData());
}
}
有时候,我们还可能听到类型通配符上限和类型通配符下限。具体有是怎么样的呢?
在上面的例子中,如果需要定义一个功能类似于getData()的方法,但对类型实参又有进一步的限制:只能是Number类及其子类。此时,需要用到类型通配符上限。
public class GenericTest {
public static void main(String[] args) {
Box name = new Box("corn");
Box age = new Box(712);
Box number = new Box(314);
getData(name);
getData(age);
getData(number);
//getUpperNumberData(name); // 1
getUpperNumberData(age); // 2
getUpperNumberData(number); // 3
}
public static void getData(Box> data) {
System.out.println("data :" + data.getData());
}
public static void getUpperNumberData(Box extends Number> data){
System.out.println("data :" + data.getData());
}
}
此时,显然,在代码//1处调用将出现错误提示,而//2 //3处调用正常。
当直接使用 List>
代表所有List的父类,有时候并不想代表所有List的父类只想代表某一类型的父类。这时候可以使用通配符的上限。如下简单的绘图程序:
//定义一个shape接口所有形状的父类
public interface Shape {
public void draw();
}
//定义一个Circle 类继承shape
public class Circle implements Shape {
@Override
public void draw() {
System.out.println("draw circle");
}
}
//定义一个Retangle 类继承shape
public class Retangle implements Shape {
@Override
public void draw() {
System.out.println("draw Retangle");
}
}
//定义一个绘制类
public class Canvas {
public static void drawAll(List list)
{
for(Shape s:list)
s.draw();
}
public static void main(String[] args)
{
List list=new ArrayList();
list.add(new Circle());
drawAll(list);
//@1提示错误The method drawAll(List) in the type Canvas is not applicable for the arguments (List)
}
}
上面@1出报错The method drawAll(List
这个好理解因为 List
并不是 List
的父类,所以会报错。
对上面的 Canvas 类做如下改变:
public class Canvas {
public static void drawAll(List extends Shape> list)
{
for(Shape s:list)
s.draw();
}
public static void main(String[] args)
{
List list=new ArrayList();
list.add(new Circle());
drawAll(list);
}
}
上面代码可以正常编译通过了 其中 List extends Shape>
表示所有 List
的子类。
泛型技术在C#和Java之中的使用方式看似相同,但实现上却有着根本性的分歧,C#里面泛型无论在程序源码中、 编译后的IL中(Intermediate Language,中间语言,这时候泛型是一个占位符),或是运行期的CLR中,都是切实存在的,List<int>与List<String>就是两个不同的类型,它们在系统运行期生成,有自己的虚方法表和类型数据,这种实现称为类型膨胀,基于这种方法实现的泛型称为真实泛型。
Java语言中的泛型则不一样,它只在程序源码中存在,在编译后的字节码文件中,就已经替换为原来的原生类型(Raw Type,也称为裸类型)了,并且在相应的地方插入了强制转型代码,因此,对于运行期的Java语言来说,ArrayList<int>与ArrayList<String>就是同一个类,所以泛型技术实际上是Java语言的一颗语法糖,Java语言中的泛型实现方法称为类型擦除,基于这种方法实现的泛型称为伪泛型。
下面是一个泛型擦除的例子:
public static void main(String[]args){
Map<String,String>map=new HashMap<String,String>();
map.put("hello","你好");
map.put("how are you?","吃了没?");
System.out.println(map.get("hello"));
System.out.println(map.get("how are you?"));
}
把这段Java代码编译成Class文件,然后再用字节码反编译工具进行反编译后,将会发现泛型都不见了,程序又变回了Java泛型出现之前的写法,泛型类型都变回了原生类型,如下代码示。
public static void main(String[]args){
Map map=new HashMap();
map.put("hello","你好");
map.put("how are you?","吃了没?");
System.out.println((String)map.get("hello"));
System.out.println((String)map.get("how are you?"));
}
当泛型遇见重载
public class GenericTypes{
public static void method(List<String>list){
System.out.println("invoke method(List<String>list)");
}
public static void method(List<Integer>list){
System.out.println("invoke method(List<Integer>list)");
}
}
这段代码是不能被编译的,因为参数List<Integer>和List<String>编译之后都被擦除了,变成了一样的原生类型List<E>,擦除动作导致这两种方法的特征签名变得一模一样。
《疯狂Java讲义》
《深入理解Java虚拟机第二版》