- 大语言模型技术系列讲解:大模型应用了哪些技术
知世不是芝士
语言模型人工智能自然语言处理chatgpt大模型
为了弄懂大语言模型原理和技术细节,笔者计划展开系列学习,并将所学内容从简单到复杂的过程给大家做分享,希望能够体系化的认识大模型技术的内涵。本篇文章作为第一讲,先列出大模型使用到了哪些技术,目的在于对大模型使用的技术有个整体认知。后续我们讲一一详细讲解这些技术概念并解剖其背后原理。正文开始大语言模型(LLMs)在人工智能领域通常指的是参数量巨大、能够处理复杂任务的深度学习模型。这些模型使用的技术主要
- 【深度学习-Day 33】从零到一:亲手构建你的第一个卷积神经网络(CNN)
吴师兄大模型
深度学习入门到精通深度学习cnn人工智能python大模型卷积神经网络(CNN)机器学习
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 基于深度学习的草莓成熟度检测系统:YOLOv5 + UI界面 + 数据集
YOLO实战营
深度学习YOLO实战项目深度学习YOLOui人工智能目标跟踪
引言随着农业科技的发展,智能化的农业生产方式正逐步替代传统农业。果实的成熟度检测对于农业生产的管理至关重要,尤其是在果蔬的采摘、分拣和运输过程中。草莓作为一种广泛种植且受消费者喜爱的水果,其成熟度检测一直是农业智能化的重要研究方向。传统的草莓成熟度检测方法大多依赖人工经验,劳动强度大且容易出现误差,因此,基于计算机视觉和深度学习的草莓成熟度自动检测系统成为了一种理想选择。深度学习技术,尤其是卷积神
- 数字人矩阵源码--基于深度学习的数字人面部表情合成
我~18339948121
数字人源码数字人矩阵源码123数字人源码矩阵深度学习线性代数人工智能flasktornadopython
AI正在席卷全球,数字人市场需求增长,用AI数字分身一天就能生产出几十条高质量短视频,你只需要上传一段视频,甚至都不用开口说话,直接复制粘贴文案,就能得到一个属于你的数字分身。深度学习数字人面部表情合成的关键技术3D面部建模与参数化建立高精度3D面部模型是表情合成的基础,常用Blendshape或面部动作编码系统(FACS)作为参数化控制方法。Blendshape通过线性组合基础表情形状生成新表情
- 数字人视频剪辑与数字人分身源码开发的的核心技术解析
微~18339948121
数字人分身源码数字人剪辑源码数字人源码djangopygamevirtualenvplotlyscikit-learnflasktornado
数字人视频剪辑与分身的核心技术解析数字人视频剪辑和分身技术是近年来人工智能与计算机视觉领域的热点,涉及虚拟形象生成、动作驱动、语音合成等多项技术。以下从技术实现、应用场景和工具选择三个方面展开分析。数字人视频剪辑的关键技术视频剪辑中数字人的核心在于动态形象的生成与编辑。基于深度学习的生成对抗网络(GAN)和3D建模技术可实现高保真虚拟形象构建。典型流程包括:人物建模:通过多视角图像或视频数据重建3
- 百度颠覆了自己,飞算JavaAI造福了中国程序员!
飞算JavaAI开发助手
百度
在当今这个科技日新月异的时代,企业纷纷寻求技术突破,以期在激烈的市场竞争中脱颖而出。百度,作为中国互联网行业的领军企业之一,凭借其强大的科技实力和创新能力,在人工智能等多个领域取得了显著成就,并正在逐步颠覆自身的传统形象。百度自成立之初,就将技术创新视为企业的生命线。从最初的搜索引擎技术,到如今的深度学习、自然语言处理、计算机视觉等前沿领域,百度始终走在技术革新的前沿。其自主研发的飞桨深度学习平台
- 【深度学习:进阶篇】--4.2.词嵌入和NLP
西柚小萌新吖(●ˇ∀ˇ●)
#深度学习深度学习自然语言处理人工智能
在RNN中词使用one_hot表示的问题假设有10000个词每个词的向量长度都为10000,整体大小太大没能表示出词与词之间的关系例如Apple与Orange会更近一些,Man与Woman会近一些,取任意两个向量计算内积都为0目录1.词嵌入1.1.特点1.3.word2vec介绍1.3.Word2Vec案例1.3.1.训练语料1.3.2.步骤1.3.3.代码2.测试代码1.词嵌入定义:指把一个维数
- 【深度学习】卷积神经网络(CNN)原理
chaser&upper
深度学习神经网络卷积计算机视觉
【深度学习】卷积神经网络原理1.卷积神经网络的组成2.卷积层2.1卷积运算过程3.padding-零填充3.1ValidandSame卷积3.2奇数维度的过滤器4.stride-步长5.多通道卷积5.1多卷积核(多个Filter)6.卷积总结7.池化层(Pooling)8.全连接层9.总结1.卷积神经网络的组成定义卷积神经网络由一个或多个卷积层、池化层以及全连接层等组成。与其他深度学习结构相比,卷
- 深度学习学习经验——卷积神经网络(CNN)
Linductor
深度学习学习经验深度学习学习cnn
卷积神经网络卷积神经网络(CNN)1.卷积神经网络的基本组成2.卷积操作3.激活函数(ReLU)4.池化操作5.全连接层6.卷积神经网络的完整实现项目示例项目目标1.加载数据2.卷积层:图像的特征探测器2.1第一个卷积层3.激活函数:增加非线性4.池化层:信息压缩器5.多层卷积和池化:逐层提取更高层次的特征6.全连接层:分类器7.模型训练和测试完整的项目示例代码总结卷积神经网络(CNN)卷积神经网
- 深度学习之分类手写数字的网络
newyork major
卷积神经网络CNN深度学习人工智能
面临的问题定义神经⽹络后,我们回到⼿写识别上来。我们可以把识别⼿写数字问题分成两个⼦问题:把包含许多数字的图像分成⼀系列单独的图像,每个包含单个数字;也就是把图像,分成6个单独的图像分类单独的数字我们将专注于编程解决第⼆个问题,分类单独的数字。这样是因为,⼀旦你有分类单独数字的有效⽅法,分割问题是不难解决的。⼀种⽅法是尝试不同的分割⽅式,⽤数字分类器对每⼀个切分⽚段打分;如果数字分类器对每⼀个⽚段
- 推荐文章:探索深度学习的不确定性边界 —— SDE-Net 开源项目解析
史多苹Thomas
推荐文章:探索深度学习的不确定性边界——SDE-Net开源项目解析SDE-NetCodeforpaper:SDE-Net:EquippingDeepNeuralnetworkwithUncertaintyEstimates项目地址:https://gitcode.com/gh_mirrors/sd/SDE-Net在当今的人工智能领域,深度神经网络(DNN)已经成为推动技术创新的基石。然而,其预测的
- 【Java】已解决java.sql.SQLRecoverableException异常
屿小夏
java开发语言
个人简介:某不知名博主,致力于全栈领域的优质博客分享|用最优质的内容带来最舒适的阅读体验!文末获取免费IT学习资料!文末获取更多信息精彩专栏推荐订阅收藏专栏系列直达链接相关介绍书籍分享点我跳转书籍作为获取知识的重要途径,对于IT从业者来说更是不可或缺的资源。不定期更新IT图书,并在评论区抽取随机粉丝,书籍免费包邮到家AI前沿点我跳转探讨人工智能技术领域的最新发展和创新,涵盖机器学习、深度学习、自然
- 深度学习流体力学【干货】
人工智能交叉前沿技术,
人工智能深度学习python机器学习
深度学习作为一种新兴的机器学习技术,为流体科学的研究提供了新的思路和方法。通过对大量数据的学习和分析,深度学习模型可以自动提取特征和模式,为流体科学中的复杂问题提供解决方案。然而,深度学习在流体科学中的应用还面临一些挑战,需要进一步研究和探索。未来,深度学习与传统流体力学方法的结合将成为流体科学研究的重要方向,多模态数据的融合、模型的可解释性、实时预测和控制等将是深度学习在流体科学中发展的重点。相
- 机器学习中为什么要用混合精度训练
十子木
机器学习机器学习人工智能
目录FP16与显存占用关系机器学习中一般使用混合精度训练:FP16计算+FP32存储关键变量。FP16与显存占用关系显存(VideoRAM,简称VRAM)是显卡(GPU)专用的内存。FP32(单精度浮点):传统深度学习默认使用32位浮点数每个参数占用`4字节`例如:1亿参数的模型→约400MB显存FP16(半精度浮点):每个参数占用`2字节`(直接减半)相同模型→约200MB显存双精度浮点(FP6
- I2C子系统面试指南:基础原理、经典问答与答题技巧全解析
嵌入式Jerry
Linux+内核面试职场和发展linux服务器运维单片机java
I2C子系统面试指南:基础原理、经典问答与答题技巧全解析关于本篇博文,B站视屏讲解链接,点击进入深度学习一、引言:为什么要深入掌握I2C子系统?在嵌入式、驱动开发、BSP移植、甚至AIoT行业,I2C几乎是绕不开的“基础功”。不管你是应聘Linux驱动开发、嵌入式软件工程师、SoC底层支持,还是BSP/系统调试,I2C的核心架构和调试经验都是面试高频关注点。掌握I2C子系统,关键不止是能写驱动,更
- KANN 是一个独立的轻量级 C 语言库,用于构建和训练中小型人工神经网络,例如多层感知器、卷积神经网络和递归神经网络(包括 LSTM 和 GRU)。它实现了基于图的逆模自动微分,并允许构建具有递归等
一、软件介绍文末提供程序和源码下载KANN是一个独立的轻量级C语言库,用于构建和训练中小型人工神经网络,例如多层感知器、卷积神经网络和递归神经网络(包括LSTM和GRU)。它实现了基于图的逆模自动微分,并允许构建具有递归、共享权重和多个输入/输出/成本的拓扑复杂神经网络。与TensorFlow等主流深度学习框架相比,KANN的可扩展性较低,但它的灵活性接近,代码库要小得多,并且仅依赖于标准C库。与
- AttnRNN:参数更少,却断档碾压LSTM/GRU的新RNN
wq舞s
人工智能python深度学习deeplearningai科技pytorch
研究者与发布者为:CSDNwq舞s,知乎wqwsgithubwqws突破性进展!新型注意力RNN(AttnRNN)在长序列任务中全面超越传统RNN模型在深度学习领域,循环神经网络(RNN)及其变体GRU和LSTM长期以来一直是处理序列数据的首选架构。然而,它们在长序列任务中始终存在信息遗忘和梯度消失等问题。今天,我很高兴地宣布一种全新的RNN架构——AttnRNN,它在多个长序列基准测试中全面超越
- AI人工智能领域深度学习的跨模态检索技术
AI学长带你学AI
AI人工智能与大数据应用开发AI应用开发高级指南人工智能深度学习ai
AI人工智能领域深度学习的跨模态检索技术关键词:跨模态检索、深度学习、多模态学习、特征提取、相似度计算、注意力机制、Transformer摘要:本文深入探讨了AI领域中基于深度学习的跨模态检索技术。我们将从基础概念出发,详细分析跨模态检索的核心算法原理、数学模型和实际应用。文章包含完整的Python实现示例,展示如何构建一个跨模态检索系统,并讨论当前的技术挑战和未来发展方向。通过本文,读者将全面理
- 工业缺陷检测深度学习方法综述
2301_80355452
深度学习人工智能
其被广泛地应用于无人质检、智能巡检、质量控制等各种生产与运维场景中.一.工业缺陷检测的背景与特点工业缺陷检测面临着诸多难点:缺陷样本匮乏、缺陷的可视性低、形状不规则、类型未知等,直接使用异常检测方法难以满足工业缺陷检测的任务需求.二.介绍工业缺陷检测问题的定义,分析研究难点与挑战异常:点异常、上下文异常和集群异常。点异常:又称为离群值(outliers)[9],描述数值上偏离正常样本的独立数据。与
- Python程序设计 第6章:函数和函数式编程
若北辰
Python程序设计python开发语言
Python程序设计Python是全球范围内最受欢迎的编程语言之一,学好Python将对个人职业生涯产生很大的助力,Python在机器学习、深度学习、数据挖掘等领域应用极为广泛。在数据科学家/数据分析师、人工智能工程师、网络安全工程师、软件工程师/全栈工程师、自动化测试工程师等岗位,年入50万,很普遍,学好Python,高薪就业不是问题,因此推出Python程序设计系列文章:Python程序设计第
- AI人工智能与OpenCV:实现智能图像编辑功能
AI智能探索者
AIAgent智能体开发实战人工智能opencv计算机视觉ai
AI人工智能与OpenCV:实现智能图像编辑功能关键词:人工智能、OpenCV、图像处理、计算机视觉、深度学习、智能编辑、图像增强摘要:本文深入探讨如何结合人工智能(AI)和OpenCV实现智能图像编辑功能。我们将从基础概念出发,详细介绍核心算法原理,展示实际代码实现,并分析典型应用场景。文章将涵盖从传统图像处理技术到深度学习方法的演进,重点讲解如何利用OpenCV和AI模型实现自动化的图像增强、
- 人工智能-基础篇-2-什么是机器学习?(ML,监督学习,半监督学习,零监督学习,强化学习,深度学习,机器学习步骤等)
weisian151
人工智能人工智能机器学习学习
1、什么是机器学习?机器学习(MachineLearning,ML)是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析等数学理论。其核心目标是让计算机通过分析数据,自动学习规律并构建模型,从而对未知数据进行预测或决策,而无需依赖显式的程序指令。基本思想:通过数据驱动的方式,使系统能够从经验(数据)中改进性能,形成对数据模式的抽象化表达。基本概念:模型:模型是对现实世界现
- 贝叶斯网络与深度学习的结合:图像识别和分类
AI天才研究院
AI人工智能与大数据计算AI大模型企业级应用开发实战自然语言处理人工智能语言模型编程实践开发语言架构设计
本文我将为您撰写一篇关于"贝叶斯网络与深度学习的结合:图像识别和分类"的技术博客文章。这篇文章将深入探讨贝叶斯网络和深度学习在图像识别和分类领域的结合应用。我会遵循您提供的要求和结构模板,确保文章内容全面、深入且易于理解。让我们开始吧。贝叶斯网络与深度学习的结合:图像识别和分类关键词:贝叶斯网络、深度学习、图像识别、图像分类、概率推理、卷积神经网络、不确定性建模文章目录贝叶斯网络与深度学习的结合:
- Halcon 初步了解
科学的发展-只不过是读大自然写的代码
图形编程c#视觉处理Halcon
1.Halcon概述Halcon是德国MVTec公司开发的一套完善的机器视觉算法包,也是一款功能强大的视觉处理软件,为工业自动化领域提供了全面的解决方案。它拥有应用广泛的机器视觉集成开发环境,提供了一套丰富的图像处理和机器视觉算法,可以在各种工业应用中进行图像分析、目标检测、测量、定位、识别等任务。Halcon的核心功能包括图像处理、特征提取与匹配、3D视觉、深度学习、条码识别、OCR识别以及视觉
- 如何在pytorch中使用tqdm:优雅实现训练进度监控
Ven%
简单入门pytorchpytorch人工智能python
文章目录为什么需要进度条?tqdm简介基础用法示例深度学习中的实战应用1.数据加载进度监控2.训练循环增强版3.验证阶段集成高级技巧与最佳实践1.自定义进度条样式2.嵌套进度条(多任务)3.分布式训练支持4.与日志系统集成性能优化建议完整训练流程示例常见问题解决方案总结掌握训练进度监控是深度学习工程师的基本功。本文将带你从零开始,深入探索如何用tqdm为深度学习训练添加专业级进度条。为什么需要进度
- 【Python】Hydra 用法详解
行码棋
#Pythonpython开发语言
Hydra官方文档Hydra(Python配置管理工具)1.引言在机器学习、深度学习和软件开发中,管理复杂的配置是一个常见的挑战。Hydra是一个强大的Python库,允许开发者轻松地管理和组织配置文件,支持动态参数覆盖、多层次配置和可组合配置等特性。2.安装HydraHydra可以通过pip直接安装:pipinstallhydra-core安装完成后,你可以使用hydra进行配置管理。3.基础用
- onnx模型部署 python_深度学习模型转换与部署那些事(含ONNX格式详细分析)
weixin_39759270
onnx模型部署python
背景深度学习模型在训练完成之后,部署并应用在生产环境的这一步至关重要,毕竟训练出来的模型不能只接受一些公开数据集和榜单的检验,还需要在真正的业务场景下创造价值,不能只是为了PR而躺在实验机器上在现有条件下,一般涉及到模型的部署就要涉及到模型的转换,而转换的过程也是随着对应平台的不同而不同,一般工程师接触到的平台分为GPU云平台、手机和其他嵌入式设备对于GPU云平台来说,在上面部署本应该是最轻松的事
- 从零开始理解Transformer模型:架构与应用
淮橘√
transformer深度学习人工智能
引言近年来,Transformer模型席卷了自然语言处理(NLP)领域,成为了深度学习中的明星架构。从Google提出的《AttentionisAllYouNeed》论文到ChatGPT、BERT等模型的广泛应用,Transformer以其强大的性能和灵活性改变了我们对序列建模的认知。本文将从零开始,深入浅出地解析Transformer的架构原理、核心组件以及实际应用场景,并提供一个简单的代码示例
- 基于深度学习的线上问诊系统设计与实现(Python+Django+MySQL)
神经网络15044
深度学习算法神经网络python深度学习django机器学习人工智能算法目标检测
基于深度学习的线上问诊系统设计与实现(Python+Django+MySQL)一、系统概述本系统结合YOLOv8目标检测和ResNet50图像分类算法,构建了一个智能线上问诊平台。系统支持用户上传医学影像(皮肤照片/X光片),自动分析并生成诊断报告,同时提供医生审核功能。二、技术栈后端框架:Django4.2数据库:MySQL8.0深度学习:YOLOv8:皮肤病变区域检测ResNet50:肺炎X光
- 深度学习中常见激活函数总结
向左转, 向右走ˉ
深度学习人工智能pytorchpython
以下是一份深度学习激活函数的系统总结,涵盖定义、类型、作用、应用及选择影响,便于你快速掌握核心知识:一、激活函数的定义在神经网络中,激活函数(ActivationFunction)是神经元计算输出的非线性变换函数,作用于加权输入和偏置之和:输出=f(加权和+偏置)核心价值:引入非线性,使神经网络能够拟合任意复杂函数(无激活函数的深度网络等价于单层线性模型)。二、常见激活函数类型1.线性函数(Lin
- 分享100个最新免费的高匿HTTP代理IP
mcj8089
代理IP代理服务器匿名代理免费代理IP最新代理IP
推荐两个代理IP网站:
1. 全网代理IP:http://proxy.goubanjia.com/
2. 敲代码免费IP:http://ip.qiaodm.com/
120.198.243.130:80,中国/广东省
58.251.78.71:8088,中国/广东省
183.207.228.22:83,中国/
- mysql高级特性之数据分区
annan211
java数据结构mongodb分区mysql
mysql高级特性
1 以存储引擎的角度分析,分区表和物理表没有区别。是按照一定的规则将数据分别存储的逻辑设计。器底层是由多个物理字表组成。
2 分区的原理
分区表由多个相关的底层表实现,这些底层表也是由句柄对象表示,所以我们可以直接访问各个分区。存储引擎管理分区的各个底层
表和管理普通表一样(所有底层表都必须使用相同的存储引擎),分区表的索引只是
- JS采用正则表达式简单获取URL地址栏参数
chiangfai
js地址栏参数获取
GetUrlParam:function GetUrlParam(param){
var reg = new RegExp("(^|&)"+ param +"=([^&]*)(&|$)");
var r = window.location.search.substr(1).match(reg);
if(r!=null
- 怎样将数据表拷贝到powerdesigner (本地数据库表)
Array_06
powerDesigner
==================================================
1、打开PowerDesigner12,在菜单中按照如下方式进行操作
file->Reverse Engineer->DataBase
点击后,弹出 New Physical Data Model 的对话框
2、在General选项卡中
Model name:模板名字,自
- logbackのhelloworld
飞翔的马甲
日志logback
一、概述
1.日志是啥?
当我是个逗比的时候我是这么理解的:log.debug()代替了system.out.print();
当我项目工作时,以为是一堆得.log文件。
这两天项目发布新版本,比较轻松,决定好好地研究下日志以及logback。
传送门1:日志的作用与方法:
http://www.infoq.com/cn/articles/why-and-how-log
上面的作
- 新浪微博爬虫模拟登陆
随意而生
新浪微博
转载自:http://hi.baidu.com/erliang20088/item/251db4b040b8ce58ba0e1235
近来由于毕设需要,重新修改了新浪微博爬虫废了不少劲,希望下边的总结能够帮助后来的同学们。
现行版的模拟登陆与以前相比,最大的改动在于cookie获取时候的模拟url的请求
- synchronized
香水浓
javathread
Java语言的关键字,可用来给对象和方法或者代码块加锁,当它锁定一个方法或者一个代码块的时候,同一时刻最多只有一个线程执行这段代码。当两个并发线程访问同一个对象object中的这个加锁同步代码块时,一个时间内只能有一个线程得到执行。另一个线程必须等待当前线程执行完这个代码块以后才能执行该代码块。然而,当一个线程访问object的一个加锁代码块时,另一个线程仍然
- maven 简单实用教程
AdyZhang
maven
1. Maven介绍 1.1. 简介 java编写的用于构建系统的自动化工具。目前版本是2.0.9,注意maven2和maven1有很大区别,阅读第三方文档时需要区分版本。 1.2. Maven资源 见官方网站;The 5 minute test,官方简易入门文档;Getting Started Tutorial,官方入门文档;Build Coo
- Android 通过 intent传值获得null
aijuans
android
我在通过intent 获得传递兑现过的时候报错,空指针,我是getMap方法进行传值,代码如下 1 2 3 4 5 6 7 8 9
public
void
getMap(View view){
Intent i =
- apache 做代理 报如下错误:The proxy server received an invalid response from an upstream
baalwolf
response
网站配置是apache+tomcat,tomcat没有报错,apache报错是:
The proxy server received an invalid response from an upstream server. The proxy server could not handle the request GET /. Reason: Error reading fr
- Tomcat6 内存和线程配置
BigBird2012
tomcat6
1、修改启动时内存参数、并指定JVM时区 (在windows server 2008 下时间少了8个小时)
在Tomcat上运行j2ee项目代码时,经常会出现内存溢出的情况,解决办法是在系统参数中增加系统参数:
window下, 在catalina.bat最前面
set JAVA_OPTS=-XX:PermSize=64M -XX:MaxPermSize=128m -Xms5
- Karam与TDD
bijian1013
KaramTDD
一.TDD
测试驱动开发(Test-Driven Development,TDD)是一种敏捷(AGILE)开发方法论,它把开发流程倒转了过来,在进行代码实现之前,首先保证编写测试用例,从而用测试来驱动开发(而不是把测试作为一项验证工具来使用)。
TDD的原则很简单:
a.只有当某个
- [Zookeeper学习笔记之七]Zookeeper源代码分析之Zookeeper.States
bit1129
zookeeper
public enum States {
CONNECTING, //Zookeeper服务器不可用,客户端处于尝试链接状态
ASSOCIATING, //???
CONNECTED, //链接建立,可以与Zookeeper服务器正常通信
CONNECTEDREADONLY, //处于只读状态的链接状态,只读模式可以在
- 【Scala十四】Scala核心八:闭包
bit1129
scala
Free variable A free variable of an expression is a variable that’s used inside the expression but not defined inside the expression. For instance, in the function literal expression (x: Int) => (x
- android发送json并解析返回json
ronin47
android
package com.http.test;
import org.apache.http.HttpResponse;
import org.apache.http.HttpStatus;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import
- 一份IT实习生的总结
brotherlamp
PHPphp资料php教程php培训php视频
今天突然发现在不知不觉中自己已经实习了 3 个月了,现在可能不算是真正意义上的实习吧,因为现在自己才大三,在这边撸代码的同时还要考虑到学校的功课跟期末考试。让我震惊的是,我完全想不到在这 3 个月里我到底学到了什么,这是一件多么悲催的事情啊。同时我对我应该 get 到什么新技能也很迷茫。所以今晚还是总结下把,让自己在接下来的实习生活有更加明确的方向。最后感谢工作室给我们几个人这个机会让我们提前出来
- 据说是2012年10月人人网校招的一道笔试题-给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 将重物放到天平左侧,问在两边如何添加砝码
bylijinnan
java
public class ScalesBalance {
/**
* 题目:
* 给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 (假设N无限大,但一种重量的砝码只有一个)
* 将重物放到天平左侧,问在两边如何添加砝码使两边平衡
*
* 分析:
* 三进制
* 我们约定括号表示里面的数是三进制,例如 47=(1202
- dom4j最常用最简单的方法
chiangfai
dom4j
要使用dom4j读写XML文档,需要先下载dom4j包,dom4j官方网站在 http://www.dom4j.org/目前最新dom4j包下载地址:http://nchc.dl.sourceforge.net/sourceforge/dom4j/dom4j-1.6.1.zip
解开后有两个包,仅操作XML文档的话把dom4j-1.6.1.jar加入工程就可以了,如果需要使用XPath的话还需要
- 简单HBase笔记
chenchao051
hbase
一、Client-side write buffer 客户端缓存请求 描述:可以缓存客户端的请求,以此来减少RPC的次数,但是缓存只是被存在一个ArrayList中,所以多线程访问时不安全的。 可以使用getWriteBuffer()方法来取得客户端缓存中的数据。 默认关闭。 二、Scan的Caching 描述: next( )方法请求一行就要使用一次RPC,即使
- mysqldump导出时出现when doing LOCK TABLES
daizj
mysqlmysqdump导数据
执行 mysqldump -uxxx -pxxx -hxxx -Pxxxx database tablename > tablename.sql
导出表时,会报
mysqldump: Got error: 1044: Access denied for user 'xxx'@'xxx' to database 'xxx' when doing LOCK TABLES
解决
- CSS渲染原理
dcj3sjt126com
Web
从事Web前端开发的人都与CSS打交道很多,有的人也许不知道css是怎么去工作的,写出来的css浏览器是怎么样去解析的呢?当这个成为我们提高css水平的一个瓶颈时,是否应该多了解一下呢?
一、浏览器的发展与CSS
- 《阿甘正传》台词
dcj3sjt126com
Part Ⅰ:
《阿甘正传》Forrest Gump经典中英文对白
Forrest: Hello! My names Forrest. Forrest Gump. You wanna Chocolate? I could eat about a million and a half othese. My momma always said life was like a box ochocol
- Java处理JSON
dyy_gusi
json
Json在数据传输中很好用,原因是JSON 比 XML 更小、更快,更易解析。
在Java程序中,如何使用处理JSON,现在有很多工具可以处理,比较流行常用的是google的gson和alibaba的fastjson,具体使用如下:
1、读取json然后处理
class ReadJSON
{
public static void main(String[] args)
- win7下nginx和php的配置
geeksun
nginx
1. 安装包准备
nginx : 从nginx.org下载nginx-1.8.0.zip
php: 从php.net下载php-5.6.10-Win32-VC11-x64.zip, php是免安装文件。
RunHiddenConsole: 用于隐藏命令行窗口
2. 配置
# java用8080端口做应用服务器,nginx反向代理到这个端口即可
p
- 基于2.8版本redis配置文件中文解释
hongtoushizi
redis
转载自: http://wangwei007.blog.51cto.com/68019/1548167
在Redis中直接启动redis-server服务时, 采用的是默认的配置文件。采用redis-server xxx.conf 这样的方式可以按照指定的配置文件来运行Redis服务。下面是Redis2.8.9的配置文
- 第五章 常用Lua开发库3-模板渲染
jinnianshilongnian
nginxlua
动态web网页开发是Web开发中一个常见的场景,比如像京东商品详情页,其页面逻辑是非常复杂的,需要使用模板技术来实现。而Lua中也有许多模板引擎,如目前我在使用的lua-resty-template,可以渲染很复杂的页面,借助LuaJIT其性能也是可以接受的。
如果学习过JavaEE中的servlet和JSP的话,应该知道JSP模板最终会被翻译成Servlet来执行;而lua-r
- JZSearch大数据搜索引擎
颠覆者
JavaScript
系统简介:
大数据的特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。网络日志、视频、图片、地理位置信息等等。第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。第四,处理速度快。最后这一点也是和传统的数据挖掘技术有着本质的不同。业界将其归纳为4个“V”——Volume,Variety,Value,Velocity。大数据搜索引
- 10招让你成为杰出的Java程序员
pda158
java编程框架
如果你是一个热衷于技术的
Java 程序员, 那么下面的 10 个要点可以让你在众多 Java 开发人员中脱颖而出。
1. 拥有扎实的基础和深刻理解 OO 原则 对于 Java 程序员,深刻理解 Object Oriented Programming(面向对象编程)这一概念是必须的。没有 OOPS 的坚实基础,就领会不了像 Java 这些面向对象编程语言
- tomcat之oracle连接池配置
小网客
oracle
tomcat版本7.0
配置oracle连接池方式:
修改tomcat的server.xml配置文件:
<GlobalNamingResources>
<Resource name="utermdatasource" auth="Container"
type="javax.sql.DataSou
- Oracle 分页算法汇总
vipbooks
oraclesql算法.net
这是我找到的一些关于Oracle分页的算法,大家那里还有没有其他好的算法没?我们大家一起分享一下!
-- Oracle 分页算法一
select * from (
select page.*,rownum rn from (select * from help) page
-- 20 = (currentPag