为了减少应用服务器对磁盘的读写,以及可以集中日志在一台机器上,方便使用ELK收集日志信息,所以考虑做一个jar包,让应用集中输出日志
Redis 自定义 RedisAppender 插件, 实现日志缓冲队列,集中日志输出.
网上搜了一圈,只发现有人写了个程序在github
地址:https://github.com/johnmpage/logback-kafka
Redis 自定义 RedisAppender 插件, 实现日志缓冲队列,集中日志输出.
本来打算引用一下这个jar就完事了,没想到在pom里下不下来,只好把源码下了,拷贝了代码过来,自己修改一下.
首先,安装一个Kafka,作为一个懒得出神入化得程序员,我选择的安装方式是
启动zookeeper容器
docker run -d --name zookeeper --net=host -t wurstmeister/zookeeper
启动kafka容器
docker run --name kafka -d -e HOST_IP=192.168.1.7 --net=host -v /usr/local/docker/kafka/conf/server.properties:/opt/kafka_2.12-1.0.0/config/server.properties -v /etc/localtime:/etc/localtime:ro -e KAFKA_ADVERTISED_PORT=9092 -e KAFKA_BROKER_ID=1 -t wurstmeister/kafka
要修改Kafka的server.properties 中zookeeper配置
配置文件如下
listeners=PLAINTEXT://192.168.1.7:9092 delete.topic.enable=true advertised.listeners=PLAINTEXT://192.168.1.7:9092 num.network.threads=3 num.io.threads=8 socket.send.buffer.bytes=102400 # The receive buffer (SO_RCVBUF) used by the socket server socket.receive.buffer.bytes=102400 # The maximum size of a request that the socket server will accept (protection against OOM) socket.request.max.bytes=104857600 log.dirs=/kafka/kafka-logs-92cfb0bbd88c num.partitions=1 num.recovery.threads.per.data.dir=1 offsets.topic.replication.factor=1 transaction.state.log.replication.factor=1 transaction.state.log.min.isr=1 log.retention.hours=168 log.retention.bytes=10737418240 log.segment.bytes=1073741824 log.retention.check.interval.ms=300000 zookeeper.connect=192.168.1.7:2181 # Timeout in ms for connecting to zookeeper zookeeper.connection.timeout.ms=6000 group.initial.rebalance.delay.ms=0 version=1.0.0
启动好了,新建SpringBoot项目,首先消费队列的
pom文件
"1.0" encoding="UTF-8"?>"http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> 4.0.0 com.lzw kafkalog 0.0.1-SNAPSHOT jar kafkalog Demo project for Spring Boot org.springframework.boot spring-boot-starter-parent 2.0.0.M6 UTF-8 UTF-8 1.8 org.springframework.kafka spring-kafka org.springframework.boot spring-boot-starter org.springframework.boot spring-boot-starter-test test org.springframework.boot spring-boot-maven-plugin <id>spring-snapshotsid> Spring Snapshots https://repo.spring.io/snapshot true <id>spring-milestonesid> Spring Milestones https://repo.spring.io/milestone false <id>spring-snapshotsid> Spring Snapshots https://repo.spring.io/snapshot true <id>spring-milestonesid> Spring Milestones https://repo.spring.io/milestone false
程序结构
KafkaConfig
package com.lzw.kafkalog.config; /** * Created by laizhenwei on 2017/11/28 */ @Configuration @EnableKafka public class KafkaConfig { @Value("${spring.kafka.consumer.bootstrap-servers}") private String consumerBootstrapServers; @Value("${spring.kafka.producer.bootstrap-servers}") private String producerBootstrapServers; @Bean KafkaListenerContainerFactory> kafkaListenerContainerFactory() { ConcurrentKafkaListenerContainerFactory factory = new ConcurrentKafkaListenerContainerFactory<>(); factory.setConsumerFactory(consumerFactory()); factory.setConcurrency(3); factory.getContainerProperties().setPollTimeout(3000); return factory; }
@Bean public ConsumerFactoryconsumerFactory() { return new DefaultKafkaConsumerFactory<>(consumerConfigs()); } @Bean public Map consumerConfigs() { Map props = new HashMap<>(); props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, consumerBootstrapServers); props.put(ConsumerConfig.GROUP_ID_CONFIG, "foo"); props.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest"); props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class); props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class); return props; } @Bean public Areceiver areceiver() { return new Areceiver(); } @Bean public Breceiver breceiver(){ return new Breceiver(); } }
KafkaAdminConfig
package com.lzw.kafkalog.config; import org.apache.kafka.clients.admin.AdminClientConfig; import org.apache.kafka.clients.admin.NewTopic; import org.springframework.beans.factory.annotation.Value; import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.Configuration; import org.springframework.kafka.core.KafkaAdmin; import java.util.HashMap; import java.util.Map; /** * Created by laizhenwei on 2017/11/28 */ @Configuration public class KafkaAdminConfig { @Value("${spring.kafka.producer.bootstrap-servers}") private String producerBootstrapServers; @Bean public KafkaAdmin admin() { Mapconfigs = new HashMap<>(); configs.put(AdminClientConfig.BOOTSTRAP_SERVERS_CONFIG,producerBootstrapServers); return new KafkaAdmin(configs); } /** * 创建队列A,1个分区 * @return */ @Bean public NewTopic a() { return new NewTopic("A", 1, (short) 1); } /** * 创建队列B,1个分区 * @return */ @Bean public NewTopic b() { return new NewTopic("B", 1, (short) 1); } }
B队列消费者
package com.lzw.kafkalog.b; import org.apache.kafka.clients.consumer.ConsumerRecord; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import org.springframework.kafka.annotation.KafkaListener; /** * Created by laizhenwei on 2017/11/28 */ public class Breceiver { Logger logger = LoggerFactory.getLogger(this.getClass()); @KafkaListener(topics={"B"}) public void listen(ConsumerRecord data) { logger.info(data.value().toString()); } }
application.yml
spring:
kafka:
consumer:
bootstrap-servers: 192.168.1.7:9092
producer:
bootstrap-servers: 192.168.1.7:9092
logback-test.xml
xml version="1.0" encoding="UTF-8"?> <configuration debug="true"> <contextName>logbackcontextName> <property name="LOG_HOME" value="F:/log" /> <appender name="aAppender" class="ch.qos.logback.core.rolling.RollingFileAppender"> <file>${LOG_HOME}/a/a.logfile> <rollingPolicy class="ch.qos.logback.core.rolling.SizeAndTimeBasedRollingPolicy"> <fileNamePattern>${LOG_HOME}/a/a-%d{yyyy-MM-dd}.%i.logfileNamePattern> <MaxHistory>30MaxHistory> <MaxFileSize>100MBMaxFileSize> <totalSizeCap>10GBtotalSizeCap> rollingPolicy> <encoder> <pattern>%msg%npattern> encoder> appender> <appender name="bAppender" class="ch.qos.logback.core.rolling.RollingFileAppender"> <file>${LOG_HOME}/b/b.logfile> <rollingPolicy class="ch.qos.logback.core.rolling.SizeAndTimeBasedRollingPolicy"> <fileNamePattern>${LOG_HOME}/b/b-%d{yyyy-MM-dd}.%i.logfileNamePattern> <MaxHistory>30MaxHistory> <MaxFileSize>100MBMaxFileSize> <totalSizeCap>10GBtotalSizeCap> rollingPolicy> <encoder> <pattern>%msg%npattern> encoder> appender> <appender name="aAsyncFile" class="ch.qos.logback.classic.AsyncAppender"> <discardingThreshold>0discardingThreshold> <queueSize>2048queueSize> <appender-ref ref="aAppender" /> appender> <logger name="com.lzw.kafkalog.a" level="INFO" additivity="false"> <appender-ref ref="aAsyncFile" /> logger> <appender name="bAsyncFile" class="ch.qos.logback.classic.AsyncAppender"> <discardingThreshold>0discardingThreshold> <queueSize>2048queueSize> <appender-ref ref="bAppender" /> appender> <logger name="com.lzw.kafkalog.b" level="INFO" additivity="false"> <appender-ref ref="bAsyncFile" /> logger> configuration>
消费者程序,重点是红框部分
红框源码,本来想做个容错,后来发现不行,原因等下再说
package com.lzw.project_b.kafka; import ch.qos.logback.core.AppenderBase; import ch.qos.logback.core.Layout; import ch.qos.logback.core.status.ErrorStatus; import org.apache.kafka.clients.producer.KafkaProducer; import org.apache.kafka.clients.producer.ProducerRecord; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import java.io.StringReader; import java.util.Properties; public class KafkaAppenderextends AppenderBase { protected Layout layout; private static final Logger LOGGER = LoggerFactory.getLogger("local"); private boolean logToLocal = false; private String kafkaProducerProperties; private String topic; private KafkaProducer producer; public void start() { super.start(); int errors = 0; if (this.layout == null) { this.addStatus(new ErrorStatus("No layout set for the appender named \"" + this.name + "\".", this)); ++errors; } if (errors == 0) { super.start(); } LOGGER.info("Starting KafkaAppender..."); final Properties properties = new Properties(); try { properties.load(new StringReader(kafkaProducerProperties)); producer = new KafkaProducer<>(properties); } catch (Exception exception) { System.out.println("KafkaAppender: Exception initializing Producer. " + exception + " : " + exception.getMessage()); } System.out.println("KafkaAppender: Producer initialized: " + producer); if (topic == null) { System.out.println("KafkaAppender requires a topic. Add this to the appender configuration."); } else { System.out.println("KafkaAppender will publish messages to the '" + topic + "' topic."); } LOGGER.info("kafkaProducerProperties = {}", kafkaProducerProperties); LOGGER.info("Kafka Producer Properties = {}", properties); if (logToLocal) { LOGGER.info("KafkaAppender: kafkaProducerProperties = '" + kafkaProducerProperties + "'."); LOGGER.info("KafkaAppender: properties = '" + properties + "'."); } } @Override public void stop() { super.stop(); LOGGER.info("Stopping KafkaAppender..."); producer.close(); } @Override protected void append(E event) { /** * 源码这里是用Formatter类转为JSON */ String msg = layout.doLayout(event); ProducerRecord producerRecord = new ProducerRecord<>(topic, msg); producer.send(producerRecord); } public String getTopic() { return topic; } public void setTopic(String topic) { this.topic = topic; } public boolean getLogToLocal() { return logToLocal; } public void setLogToLocal(String logToLocal) { if (Boolean.valueOf(logToLocal)) { this.logToLocal = true; } } public void setLayout(Layout layout) { this.layout = layout; } public String getKafkaProducerProperties() { return kafkaProducerProperties; } public void setKafkaProducerProperties(String kafkaProducerProperties) { this.kafkaProducerProperties = kafkaProducerProperties; } }
LogService就记录一段长的垃圾日志
package com.lzw.project_b.service; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import org.springframework.stereotype.Component; /** * Created by laizhenwei on 2017/12/1 */ @Component public class LogService { Logger logger = LoggerFactory.getLogger(this.getClass()); private static final String msg = "asdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfa" + "sdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdf" + "sadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfa" + "sdfsadfasdfsadfasdfsaasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsa" + "dfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadf" + "asdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfas" + "dfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsa" + "dfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfas" + "dfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadf" + "sdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfa" + "sdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsadfasdfsa"; public void dolog() { logger.info(msg, new RuntimeException(msg)); } }
KafkaLogController就一个很无聊的输出日志请求,并记录入队时间
package com.lzw.project_b.controller; import com.lzw.project_b.service.LogService; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.web.bind.annotation.GetMapping; import org.springframework.web.bind.annotation.RequestMapping; import org.springframework.web.bind.annotation.RestController; /** * Created by laizhenwei on 2017/11/29 */ @RestController @RequestMapping(path = "/kafka") public class KafkaLogController { @Autowired private LogService logService; @GetMapping(path = "/aa") public void aa() { long begin = System.nanoTime(); for (int i = 0; i < 100000; i++) { logService.dolog(); } long end = System.nanoTime(); System.out.println((end - begin) / 1000000); } }
启动两个程序,来一个请求
查看耗时
生产者的 logback-test.xml
xml version="1.0" encoding="UTF-8"?> <configuration debug="true"> <appender name="KAFKA" class="com.lzw.project_b.kafka.KafkaAppender"> <topic>Btopic> <kafkaProducerProperties> bootstrap.servers=192.168.1.7:9092 retries=0 value.serializer=org.apache.kafka.common.serialization.StringSerializer key.serializer=org.apache.kafka.common.serialization.StringSerializer producer.type=async request.required.acks=0 kafkaProducerProperties> <logToLocal>truelogToLocal> <layout class="ch.qos.logback.classic.PatternLayout"> <pattern>%date %level [%thread] %logger{36} [%file : %line] %msg%npattern> layout> appender> 时间滚动输出 level为 monitor 日志 <appender name="localAppender" class="ch.qos.logback.core.rolling.RollingFileAppender"> <file>F:/localLog/b/b.logfile> <rollingPolicy class="ch.qos.logback.core.rolling.SizeAndTimeBasedRollingPolicy"> <fileNamePattern>F:/localLog/b/b-%d{yyyy-MM-dd}.%i.tar.gzfileNamePattern> <MaxHistory>30MaxHistory> <MaxFileSize>200MBMaxFileSize> <totalSizeCap>10GBtotalSizeCap> rollingPolicy> <encoder class="ch.qos.logback.classic.encoder.PatternLayoutEncoder"> <pattern>%date %level [%thread] %logger{36} [%file : %line] %msg%npattern> <charset>UTF-8charset> encoder> appender> <appender name="asyncLocal" class="ch.qos.logback.classic.AsyncAppender"> <discardingThreshold>0discardingThreshold> <queueSize>2048queueSize> <appender-ref ref="localAppender"/> appender> <logger name="local" additivity="false"> <appender-ref ref="asyncLocal"/> logger> <root level="INFO"> <appender-ref ref="KAFKA"/> root> configuration>
关于为什么我没用有源码中的Json Formatter ,因为转换Json会花更多时间,性能更低.源码中是用了Json-simple,我换成了Gson,快了很多,但是还是有性能影响,如果非要转成Json
我选择在ELK中转,也不会在应用中耗时间去转
生产者之里,我用了最极端的one way 方式.吞吐量最高,但是无法得知是否已经入队.
这里生产者的程序里Logback 必须使用同步日志才能客观知道入队的耗时.
总结
容错:我尝试在生产者中写一段容错代码,一旦链接Kafka不通.或者队列不可写的时候,记录倒本地日志.关闭Kafka测试,生产者却阻塞了,一直重连,程序基本废了
找了很多方法,没有找到关闭重连的方式.
灵活性:相比起redis队列来说,Kafka就比较尴尬(例如我这个场景,还需要保证Kafka队列可用,性能没提升多少,还增加了维护成本)
性能:我在固态硬盘与机械硬盘中测试过,由于Kafka很懂机械硬盘,并且对顺序写入做了很大优化,在机械硬盘上表现比固态硬盘性能大概高30%,主打低成本?
入队的性能不怎么高,实际上还比不上直接写入本地(别忘了入队以后,在消费者那边还要写盘,队列也是持久化倒硬盘,等于写了两次盘)
用户体验:据说JAVA驱动还算是做得比较好的了
最后:不适合我的业务场景.也用得不深.最后我选择了redis做队列
我也没找到办法关闭Kafaka的持久化,写两次硬盘,某些情况日志并不是不可丢失(redis做队列很灵活,写不进队列的时候,可以写入本地硬盘),redis进的快消费快,内存基本不会有很大压力,cpu消耗也不高,个人认为在数据不是特别重要的情况下成本比Kafka还低,性能可是质的提升.