引用文章:python 从深度相机realsense生成pcl点云
ubuntu下intel realsense的软件可以打开realsen的界面,里面可以得到彩色图像和深度图像,我们通过realsense的python接口获取彩色信息和深度信息。
import pyrealsense2 as rs
import numpy as np
import cv2
import pcl
if __name__ == "__main__":
# Configure depth and color streams
pipeline = rs.pipeline()
config = rs.config()
config.enable_stream(rs.stream.depth, 640, 480, rs.format.z16, 30)
config.enable_stream(rs.stream.color, 640, 480, rs.format.bgr8, 30)
# Start streaming
pipeline.start(config)
try:
while True:
# Wait for a coherent pair of frames: depth and color
frames = pipeline.wait_for_frames()
depth_frame = frames.get_depth_frame()
color_frame = frames.get_color_frame()
if not depth_frame or not color_frame:
continue
# Convert images to numpy arrays
depth_image = np.asanyarray(depth_frame.get_data())
color_image = np.asanyarray(color_frame.get_data())
# Apply colormap on depth image (image must be converted to 8-bit per pixel first)
depth_colormap = cv2.applyColorMap(cv2.convertScaleAbs(depth_image, alpha=0.03), cv2.COLORMAP_JET)
# Stack both images horizontally
images = np.hstack((color_image, depth_colormap))
# Show images
cv2.namedWindow('RealSense', cv2.WINDOW_AUTOSIZE)
cv2.imshow('RealSense', images)
key = cv2.waitKey(1)
# Press esc or 'q' to close the image window
if key & 0xFF == ord('q') or key == 27:
cv2.destroyAllWindows()
break
finally:
# Stop streaming
pipeline.stop()
import pyrealsense2 as rs
import numpy as np
import cv2
import scipy.misc
import pcl
def get_image():
# Configure depth and color streams
pipeline = rs.pipeline()
config = rs.config()
config.enable_stream(rs.stream.depth, 640, 480, rs.format.z16, 30)
config.enable_stream(rs.stream.color, 640, 480, rs.format.bgr8, 30)
# Start streaming
pipeline.start(config)
#获取图像,realsense刚启动的时候图像会有一些失真,我们保存第100帧图片。
for i in range(100):
data = pipeline.wait_for_frames()
depth = data.get_depth_frame()
color = data.get_color_frame()
#获取内参
dprofile = depth.get_profile()
cprofile = color.get_profile()
cvsprofile = rs.video_stream_profile(cprofile)
dvsprofile = rs.video_stream_profile(dprofile)
color_intrin=cvsprofile.get_intrinsics()
print(color_intrin)
depth_intrin=dvsprofile.get_intrinsics()
print(color_intrin)
extrin = dprofile.get_extrinsics_to(cprofile)
print(extrin)
depth_image = np.asanyarray(depth.get_data())
color_image = np.asanyarray(color.get_data())
# Apply colormap on depth image (image must be converted to 8-bit per pixel first)
depth_colormap = cv2.applyColorMap(cv2.convertScaleAbs(depth_image, alpha=0.03), cv2.COLORMAP_JET)
cv2.imwrite('color.png', color_image)
cv2.imwrite('depth.png', depth_image)
cv2.imwrite('depth_colorMAP.png', depth_colormap)
scipy.misc.imsave('outfile1.png', depth_image)
scipy.misc.imsave('outfile2.png', color_image)
def my_depth_to_cloud():
pc = rs.pointcloud()
points = rs.points()
pipeline = rs.pipeline()
config = rs.config()
config.enable_stream(rs.stream.depth, 640, 480, rs.format.z16, 30)
config.enable_stream(rs.stream.color, 640, 480, rs.format.bgr8, 30)
pipe_profile = pipeline.start(config)
for i in range(100):
data = pipeline.wait_for_frames()
depth = data.get_depth_frame()
color = data.get_color_frame()
frames = pipeline.wait_for_frames()
depth = frames.get_depth_frame()
color = frames.get_color_frame()
colorful = np.asanyarray(color.get_data())
colorful=colorful.reshape(-1,3)
pc.map_to(color)
points = pc.calculate(depth)
#获取顶点坐标
vtx = np.asanyarray(points.get_vertices())
#获取纹理坐标
#tex = np.asanyarray(points.get_texture_coordinates())
with open('could.txt','w') as f:
for i in range(len(vtx)):
f.write(str(np.float(vtx[i][0])*1000)+' '+str(np.float(vtx[i][1])*1000)+' '+str(np.float(vtx[i][2])*1000)+' '+str(np.float(colorful[i][0]))+' '+str(np.float(colorful[i][1]))+' '+str(np.float(colorful[i][2]))+'\n')
https://github.com/strawlab/python-pcl/blob/master/examples/example.py
with open('could.txt','r') as f:
lines = f.readlines()
num=0
for line in lines:
l=line.strip().split()
data.append([np.float(l[0]),np.float(l[1]),np.float(l[2]),np.float(l[3]),np.float(l[4]),np.float(l[5])])
#data.append([np.float(l[0]), np.float(l[1]), np.float(l[2])])
num = num+1
with open('cloud_rgb.txt', 'w') as f:
for i in range(len(data)):
f.write(str(np.float(data[i][0])) + ' ' + str(np.float(data[i][1])) + ' ' + str(np.float(data[i][2]))+ ' ' + str(np.int(data[i][3])<<16|np.int(data[i][4])<<8|np.int(data[i][5]))+'\n')
def visual():
cloud = pcl.PointCloud_PointXYZRGB()
points = np.zeros((307200,4),dtype=np.float32)
n=0
with open('cloud_rgb.txt','r') as f:
lines = f.readlines()
for line in lines:
l=line.strip().split()
#保存xyz时候扩大了1000倍,发现并没有用
points[n][0] = np.float(l[0])/1000
points[n][1] = np.float(l[1])/1000
points[n][2] = np.float(l[2])/1000
points[n][3] = np.int(l[3])
n=n+1
print(points[0:100]) #看看数据是怎么样的
cloud.from_array(points) #从array构建点云的方式
visual = pcl.pcl_visualization.CloudViewing()
visual.ShowColorCloud(cloud)
v = True
while v:
v = not (visual.WasStopped())
def txt2pcd():
import time
filename='cloud_rgb.txt'
print("the input file name is:%r." % filename)
start = time.time()
print("open the file...")
file = open(filename, "r+")
count = 0
# 统计源文件的点数
for line in file:
count = count + 1
print("size is %d" % count)
file.close()
# output = open("out.pcd","w+")
f_prefix = filename.split('.')[0]
output_filename = '{prefix}.pcd'.format(prefix=f_prefix)
output = open(output_filename, "w+")
list = ['# .PCD v0.7 - Point Cloud Data file format\n', 'VERSION 0.7\n', 'FIELDS x y z rgb\n', 'SIZE 4 4 4 4\n',
'TYPE F F F U\n', 'COUNT 1 1 1 1\n']
output.writelines(list)
output.write('WIDTH ') # 注意后边有空格
output.write(str(count))
output.write('\nHEIGHT ')
output.write(str(1)) # 强制类型转换,文件的输入只能是str格式
output.write('\nPOINTS ')
output.write(str(count))
output.write('\nDATA ascii\n')
file1 = open(filename, "r")
all = file1.read()
output.write(all)
output.close()
file1.close()
end = time.time()
print("run time is: ", end - start)
import pcl.pcl_visualization
cloud = pcl.load_XYZRGB('cloud_rgb.pcd')
visual = pcl.pcl_visualization.CloudViewing()
visual.ShowColorCloud(cloud, 'cloud')
flag = True
while flag:
flag != visual.WasStopped()
# TypeError: expected bytes, str found
原图,深度图,云图(云图一片黑,鼠标滚轮翻一下) 如下:
opencv保存的颜色图:
scipy保存的颜色图:
深度图:
深度图可视化:
云图(似乎深度和色彩没有对齐):