边缘计算在安防行业中的应用趋势

在现阶段的物联网设备中摄像头及摄像头模组占了非常大的比例,任何智能家居设备及道路监控,凡是需要做图像数据采集进行分析和反馈的场景都会需要摄像头,而安防行业的核心终端设备就是摄像头。曾经安防行业因为存储和设备整体方案的昂贵成本一般只应用于公共交通、酒店、楼宇、园区等场景中,现如今随着成本的降低,家庭安防、新零售、商业中心等也在逐渐赋能智能安防。

但如何让私有与公有网络的成本、性能、智能分析兼顾,越来越成为商业智能落地的关键。

边缘计算可就近计算的特质,让其一方面可对人脸数据、人群分析、生物识别、商品识别等分析结果进行高效的处理,让原先智能场景不再需要在现场部署昂贵笨重的硬件设备,极大提高智能场景的落地效率和复制速度;另一方面分布广泛的摄像头也因为边缘存储服务的就近存储,可以把海量的监控数据就近存储起来,提供了就近高速可存可分析的业务体验。

边缘计算的这两个优势使得安防行业与之紧密联系在了一起,在边缘计算的部署下安防场景能够更好更快地落地实施。安防领域作为物联网领域流量传输最大的场景,率先通过边缘计算驱动整体性能体验得到提升,下一步逐步实现商业智能、楼宇智能、小区智能的落地将会成为下一个物联网爆发点。

例如,在商超等应用环境中,可对顾客的性别分布、年龄分布等客观信息,并结合单位区域内逗留时间等维度信息进行分析,进而得到如何部署相关的商铺位置、如何集中餐饮等后勤服务力量的决策建议;在楼宇与小区应用中可减少非必要的安保人员,用机力代替人力,自动对出入的人员进行身份比对,对可疑人员进行身份报警;在社会治安应用中,可根据治安、反恐、社区可疑人员等信息结合时间频次信息等预测出可能出现的危险情况和安全隐患,从而组织治安力量更有针对性地进行社会管理。

边缘计算在安防领域的实践从根本上打破了原本“智能”应用落地的壁垒,让原本受限于计算力、传输环境、存储环境等诸多问题的应用设想得以实现。

你可能感兴趣的:(智能计算)