Progression-Free Sets and Sublinear Pairing-Based Non-Interactive Zero-Knowledge Arguments

1. 背景知识

在Groth 2010年论文《Short Pairing-based Non-interactive Zero-Knowledge Arguments》论文的基础上,Lipmaa 2012年论文《Progression-Free Sets and Sublinear Pairing-Based Non-Interactive Zero-Knowledge Arguments 》中指出:
NIZK proofs无法在无random oracles(如Fiat-Shamir heuristics)或trusted setup(如common reference string)的情况下构建成功。如[BFM88]论文中展示了如何通过common reference string (CRS) model来构建NIZK proofs。

在减少communication complexity和verifier’s computational complexity这两方面,有大量的文献做了研究。

相比于Groth 2010论文,Lipmaa取得了如下进展:
Progression-Free Sets and Sublinear Pairing-Based Non-Interactive Zero-Knowledge Arguments_第1张图片
主要特点为:

  • 采用了非对称pairing(运算效率更高),而不是对称pairing;Progression-Free Sets and Sublinear Pairing-Based Non-Interactive Zero-Knowledge Arguments_第2张图片

  • 采用了更弱的安全假设——
    Power Symmetric Discrete Logarithm,而不是
    Power Computational Diffifie-Hellman。本论文主要基于两个assumption: computational assumption( Λ − P S D L ^ \hat{\Lambda-PSDL} ΛPSDL^)和knowledge assumption( Λ − P K E \Lambda-PKE ΛPKE),而Groth10中采用的是 [ a n 2 ] − P K E [an^2]-PKE [an2]PKE [ a n 2 ] − C P D H [an^2]-CPDH [an2]CPDH假设。
    Progression-Free Sets and Sublinear Pairing-Based Non-Interactive Zero-Knowledge Arguments_第3张图片
    Progression-Free Sets and Sublinear Pairing-Based Non-Interactive Zero-Knowledge Arguments_第4张图片

Progression-Free Sets and Sublinear Pairing-Based Non-Interactive Zero-Knowledge Arguments_第5张图片

Progression-Free Sets and Sublinear Pairing-Based Non-Interactive Zero-Knowledge Arguments_第6张图片
Lipmaa 2012的改进流程如下:
1)将 a ⃗ , b ⃗ , c ⃗ \vec{a},\vec{b},\vec{c} a ,b ,c 的commit key缩小统一均为 g λ 1 , . . . , g λ n g_{\lambda_1}, ..., g_{\lambda_n} gλ1,...,gλn
在这里插入图片描述
从而使构建的 F ( x ) F(x) F(x)多项式的最高阶不大于 2 λ n 2\lambda_n 2λn,CRS大小 ∣ Λ ^ ∣ < 2 λ n |\hat{\Lambda}|<2\lambda_n Λ^<2λn group elements【for i ∈ [ n ] , g 2 λ i 不 应 在 C R S 中 i\in [n], g^{2\lambda_i}不应在CRS中 i[n],g2λiCRS】,而不再是Groth10的 Θ ( n 2 ) \Theta (n^2) Θ(n2)。通过构建 a progression-free subset of odd integers of cardinality n n n,对应地CRS仅需有 Θ ( λ n ) = n 1 + o ( 1 ) \Theta (\lambda_n)=n^{1+o(1)} Θ(λn)=n1+o(1)个 generators { g x l : l ∈ Λ ^ } \{g^{x^l}: l\in \hat{\Lambda}\} {gxl:lΛ^}
Progression-Free Sets and Sublinear Pairing-Based Non-Interactive Zero-Knowledge Arguments_第7张图片

2. Progression-Free Sets

Progression-Free Sets定义为:
在这里插入图片描述

3. Knowledge commitment scheme

Progression-Free Sets and Sublinear Pairing-Based Non-Interactive Zero-Knowledge Arguments_第8张图片

4. Hadamard product argument

Progression-Free Sets and Sublinear Pairing-Based Non-Interactive Zero-Knowledge Arguments_第9张图片

5. Permutation Argument

Progression-Free Sets and Sublinear Pairing-Based Non-Interactive Zero-Knowledge Arguments_第10张图片

6. Circuit Satisfiability Constant Size NIZK Argument

Progression-Free Sets and Sublinear Pairing-Based Non-Interactive Zero-Knowledge Arguments_第11张图片
Progression-Free Sets and Sublinear Pairing-Based Non-Interactive Zero-Knowledge Arguments_第12张图片

你可能感兴趣的:(零知识证明)