- 【深度学习|学习笔记】预训练(Pretraining)的作用有哪些?
985小水博一枚呀
深度学习学习笔记深度学习学习笔记人工智能
【深度学习|学习笔记】预训练(Pretraining)的作用有哪些?【深度学习|学习笔记】预训练(Pretraining)的作用有哪些?文章目录【深度学习|学习笔记】预训练(Pretraining)的作用有哪些?前言✅一、提高模型性能✅二、降低训练成本✅三、迁移学习能力强✅四、模型结构验证过,可靠性高✅五、促进多模态和复杂任务发展总结如何将自己的遥感数据(输入波段为17)用作DenseNet121
- EasyFeature:智能要素提取的遥感技术创新
智绘空天
人工智能深度学习机器学习图像处理
引言传统遥感解译受制于海量数据与地物复杂性,精度与效率常陷入瓶颈。EasyFeature软件正是应对这一领域痛点的先锋解决方案,其核心“要素智能提取”特性,聚焦于云覆盖、道路、居民地/建筑物、林地、水系等关键专题信息的深度挖掘,彻底改变了工程化影像处理流程。该软件依托强大的核心技术壁垒与智能算法,不仅有效提升了信息提取精度,更将遥感解译的效率提升至全新高度,为遥感数据分析领域注入自动化能量。核心技
- GIS基础应用技术从0开始
前端小白从0开始
html5vue.js前端GISOpenLayers
一、GIS数据构成1、地图数据:包括地形图,交通图,水系图等基础地理信息,如高德路网图,中国地形图等。图1-高德卫星图+路网2、遥感数据:通过卫星,无人机等遥感设备获取的影响数据。如天地图和地块管理系统中展示的高清地图图2-卫星遥感影像与无人机影像3、属性数据:描述地理实体特征的文字和数字信息。例如一个地块的类型和面积。图3-地理元素与其属性表4、元数据:描述地理数据的内容、质量、来源等信息的数据
- 植被监测新范式!Python驱动机器学习反演NDVI/LAI关键技术解析
梦想的初衷~
生态环境遥感植被python机器学习生态环境监测
在全球气候变化与生态环境监测的重要需求下,植被参数遥感反演作为定量评估植被生理状态、结构特征及生态功能的核心技术,正面临数据复杂度提升、模型精度要求高、多源异构数据融合等挑战。人工智能(AI)技术的快速发展,尤其是机器学习与深度学习算法的突破,为解决这些难题提供了全新路径。AI凭借强大的非线性拟合能力、数据特征自动提取优势及跨模态信息融合潜力,能够高效处理遥感数据中的噪声与不确定性,显著提升植被参
- DeepSeek 赋能卫星遥感:AI 驱动数据分析新范式
奔跑吧邓邓子
DeepSeek实战DeepSeek卫星遥感数据分析人工智能应用
目录一、引言二、DeepSeek技术解析2.1DeepSeek简介2.2核心能力与优势三、卫星遥感数据分析概述3.1数据获取与特点3.2传统分析方法及挑战四、DeepSeek在卫星遥感数据分析中的应用场景4.1土地利用与覆盖监测4.2自然资源调查4.3灾害监测与预警4.4生态环境评估五、应用案例剖析5.1具体项目背景介绍5.2DeepSeek应用过程与成果展示5.3与传统方法对比优势六、面临的挑战
- 【智慧农业 × 国产大模型】智能病虫害识别与作物产量预测工程实践全流程解析
观熵
国产大模型部署实战全流程指南大数据人工智能国产大模型
【智慧农业×国产大模型】智能病虫害识别与作物产量预测工程实践全流程解析关键词国产大模型、农业AI、病虫害识别、作物产量预测、图像分类、多模态融合、时序建模、遥感数据、边缘计算、农业大数据、模型轻量化、精细化种植摘要随着农业智能化进程加速,传统依赖人力经验的病虫害识别与作物产量评估方式,已无法满足大规模、精细化生产需求。本文基于国产大模型的实际应用案例,深入解析如何构建面向田间场景的“病虫害识别+产
- 珈和科技荣登《湖北日报》头版,碧空“慧眼”让业者心中有“数”
珈和info
科技
2016年以来每年的4月24日设定为“中国航天日”,今年我们一起在家门口(今年的主场活动将在湖北武汉举办)以“极目楚天,共襄星汉”为主题迎来了第九个“中国航天日”。回望珈和科技创业十年路,始终与国家航天事业保持步调一致、快速前进,并连续6年荣获“中国商业航天30强”称号。作为2023年度“中国商业航天30强”中湖北省唯二上榜的企业,珈和科技在商业航天领域离下游产业链最近的一环——卫星遥感数据服务场
- GEE案例:基于Google Earth Engine的RUSLE土壤侵蚀模型实现与分析(恒河缓冲区)
此星光明
GEE案例分析人工智能大数据rusle土壤侵蚀模型算法gee
基于GoogleEarthEngine的RUSLE土壤侵蚀模型实现与分析(恒河缓冲区案例研究|2024-2025年度数据)1.研究背景与数据准备本研究利用修正通用土壤流失方程(RUSLE)评估恒河支流缓冲区的土壤侵蚀状况。核心数据集包括:气象数据:CHIRPS日降水数据集(计算R因子)地形数据:SRTM数字高程模型(提取LS因子)遥感数据:哨兵2号(计算C因子)、MODIS土地覆盖(提取P因子)土
- 轻松发TGRS!遥感结合小目标检测 模型达到94.2%mAP
Ai多利
目标检测人工智能计算机视觉遥感
2025深度学习发论文&模型涨点之——遥感+小目标检测遥感在军事侦察、资源勘探、环境监测等领域的应用日益广泛。然而,如何从海量的遥感数据中准确、高效地检测出小目标,已成为当前遥感图像处理领域的关键挑战之一。小目标在遥感图像中往往具有尺寸微小、背景复杂、对比度低等特点,这使得传统的检测方法难以满足实际应用的需求。近年来,随着深度学习技术的兴起,基于卷积神经网络(CNN)的检测算法为遥感小目标检测带来
- 【卫星遥感影像】国产遥感影像分类技术应用研究进展综述_论文推荐
兰小静
卫星遥感论文推荐国产遥感影像分类应用研究进展
影像分类是遥感影像信息提取中的基本问题之一和遥感影像应用的关键,为我国掌握本土信息资源自主权、满足国家的紧迫需求具有重大战略意义。本文将进行这篇遥感影像分类的论文推荐。1.论文引用[1]胡杰,张莹,谢仕义.国产遥感影像分类技术应用研究进展综述[J].计算机工程与应用,2021,57(03):1-13.2.国产遥感数据概述环境系列遥感卫星:是我国专门用于环境和灾害监测的对地观测卫星系统,主要由2颗光
- 最新AI赋能Python长时序植被遥感动态分析、物候提取、时空变异归因及RSEI生态评估
jwwkyjspt
地学植物遥感人工智能遥感植物农业
在遥感技术与人工智能深度融合的2025年,AI大模型正重塑长时序植被遥感数据分析范式。从Landsat/Sentinel卫星数据的智能化去云处理,到MODIS植被产品的AI辅助质量控制,以ChatGPT、DeepSeeK为代表的大模型技术已成为提升遥感数据处理效率与精度的核心工具——尤其在长时序植被动态监测、物候期精准提取、时空变异归因分析及生态环境质量评估等领域,展现出传统方法难以企及的技术优势
- 中国地区土地覆盖综合数据集
做科研的周师兄
数据集分享大数据
LandcoverproductsofChina时间分辨率年共享方式开放获取数据大小434.73MB数据时间范围元数据更新时间2020-07-17数据集摘要中国土地覆盖数据集包括5种产品:1)glc2000_lucc_1km_China.asc,由GLC2000项目开发的基于SPOT4遥感数据的全球土地覆盖数据中国子集,数据名称为GLC2000.GLC2000中国区域土地覆盖数据由全球覆盖数据直接
- 遥感大数据处理基础与AI大模型交互
小艳加油
人工智能GEEchatgpt遥感
公众号,【科研的力量】随着航空、航天、近地空间等多个遥感平台的不断发展,近年来遥感技术突飞猛进。由此,遥感数据的空间、时间、光谱分辨率不断提高,数据量也大幅增长,使其越来越具有大数据特征。对于相关研究而言,遥感大数据的出现为其提供了前所未有的机遇,但同时也提出了巨大的挑战。传统的工作站和服务器已经无法满足大区域、多尺度海量遥感数据处理的需要。为解决这一问题,国内外涌现了许多全球尺度地球科学数据(尤
- AI-Python机器学习与深度学习技术在植被参数反演中的核心技术应用
xiao5kou4chang6kai4
生态遥感深度学习人工智能python机器学习遥感反演植被参数生态环境
在全球气候变化与生态环境监测的重要需求下,植被参数遥感反演作为定量评估植被生理状态、结构特征及生态功能的核心技术,正面临数据复杂度提升、模型精度要求高、多源异构数据融合等挑战。人工智能(AI)技术的快速发展,尤其是机器学习与深度学习算法的突破,为解决这些难题提供了全新路径。AI凭借强大的非线性拟合能力、数据特征自动提取优势及跨模态信息融合潜力,能够高效处理遥感数据中的噪声与不确定性,显著提升植被参
- 【大模型ChatGPT +DeepSeeK+python】最新AI赋能Python长时序植被遥感动态分析、物候提取、时空变异归因及RSEI生态评估
赵钰老师
遥感DeepSeekpython人工智能chatgpt数据分析pythonarcgis
在遥感技术与人工智能深度融合的2025年,AI大模型正重塑长时序植被遥感数据分析范式。从Landsat/Sentinel卫星数据的智能化去云处理,到MODIS植被产品的AI辅助质量控制,以ChatGPT、DeepSeeK为代表的大模型技术已成为提升遥感数据处理效率与精度的核心工具——尤其在长时序植被动态监测、物候期精准提取、时空变异归因分析及生态环境质量评估等领域,展现出传统方法难以企及的技术优势
- 第36讲:作物生长预测中的时间序列建模(LSTM等)
Chh0715
lstm人工智能rnnr语言python
目录为什么用时间序列模型来预测作物生长?⛓️什么是LSTM?示例案例:预测小麦NDVI变化趋势1️⃣模拟数据构建(或使用真实遥感数据)2️⃣构建LSTM所需数据格式3️⃣构建并训练LSTM模型4️⃣模型预测与效果可视化除了LSTM,还有哪些方法?农学中的潜在应用场景✅小结在精准农业快速发展的今天,如何准确预测作物的生长状态,已成为提升农业决策效率的重要课题。特别是面对多变的气候、不同地块的管理方式
- 遥感大模型
大奎帝国
笔记
遥感大模型简介单一模态简介随着高光谱遥感技术的迅猛发展,光谱成像数据呈爆炸式增长,现有的分析方法和解译手段已不能满足全要素精细地物感知的需求,人工智能大模型的出现,为解决高光谱遥感数据信息充分提取与挖掘、实现“吃干榨净”提供了技术保障。斯坦福大学的研究定义基础模型(FM)为:指在广泛数据上训练的模型(通常使用大规模的自监督方法),可以用于广泛的下游任务(通过微调等方法)。GPT-4等是目前比较流行
- 第十九讲 XGBoost 二分类模型案例(遥感数据识别玉米与小麦地块)
Chh0715
数据挖掘人工智能r语言机器学习算法分类
案例场景:遥感数据识别玉米与小麦地块你是一名农业遥感研究者,希望根据遥感指数(如NDVI、EVI、土壤亮度等)对农田进行分类,判断地块是玉米还是小麦。步骤1:模拟数据生成我们使用dplyr和MASS生成500个样本数据,包含4个遥感特征变量与1个类别标签(玉米=1,小麦=0)。#加载所需包library(dplyr)library(ggplot2)library(xgboost)library(c
- 根据ndvi提取非水体_无人机多光谱遥感系统在河道水体富养化监测中的应用
小小黑飞飞
根据ndvi提取非水体
摘要:伴随着无人机平台的不断进步,遥感传感器日益丰富,可见光及近红外波段的高分辨率影像逐步普及,推动无人机低空遥感由侧重几何定位的测绘应用向以决策支持为目的的专题信息提取方向转变。运用分析遥感数据的数学和物理方法,开展定量遥感方面的研究,进一步将基础影像数据转化为高级专题产品,正在成为一种新的趋势。本文介绍一种面向水体污染物监测的无人机多光谱应用方法。水体富营养化防治是水污染治理中最为复杂和困难的
- CNN+Transformer实现遥感影像建筑物分割
hanfeng5268
深度学习cnntransformer人工智能
文章目录一、局部细节与全局上下文的协同建模1.CNN的局部感知优势空间局部性:平移等变性:层次化特征提取:2.Transformer的全局关联优势长距离依赖建模:动态权重分配:尺度不变性:二、多尺度特征融合能力1.CNN的多级特征金字塔2.Transformer的多头注意力机制三、对遥感数据特性的适配优化1.高分辨率影像处理局部计算优化:滑动窗口策略:2.复杂场景鲁棒性光照变化:类内差异:小目标检
- 当气象水文遇见R语言——破解时空数据的“达芬奇密码“
Yolo566Q
r语言开发语言
在气象水文科学领域,数据从来不只是简单的数字阵列。台风路径的时空跳跃、流域径流的非线性涨落、气候要素的混沌演变,这些充满不确定性的自然现象转化为数据时,呈现出多维时空交织的复杂图景。研究人员常常要在TB级遥感数据中捕捉毫米级降水变化,从百年尺度的气候序列里识别突变拐点,在非结构化的观测数据中重构三维大气场——这些看似不可能完成的任务,正是现代气象水文研究的日常挑战。传统的数据处理工具在这场博弈中频
- CASA模型-估算陆地生态系统植被净初级生产力NPP的经典模型(相关遥感数据、MODIS NDVI遥感产品预处理、气象数据预处理与空间插值、区域制图)
KY_chenzhao
人工智能大数据机器学习matlab
CASA模型(Carnegie-Ames-StanfordApproach)是一个基于光合作用和呼吸作用过程的生态系统生产力模型。在实际应用中,气象数据是CASA模型的关键输入之一,用于模拟植被的光合作用和呼吸作用。本文将介绍如何结合气象数据实现CASA模型,并提供一个实际案例CASA模型需要的气象数据主要包括:辐射(光合有效辐射PAR)温度(影响酶活性和呼吸作用)降水(影响土壤水分和植被生长)这
- 【读论文】多/高光谱图像和 LiDAR 数据联合分类方法研究(2020)
氧艺
读论文分类机器学习
【读论文】多/高光谱图像和LiDAR数据联合分类方法研究(2020)王青旺DOI文章目录摘要:关键词:结论:1.该论文研究了什么?2.创新点在哪?3.研究方法是什么?4.得到的结论是什么?摘要:地物分类识别需求的不断升级,对遥感场景解译提出了新要求:更高的空间二维解译精度和遥感场景空间三维解译。利用多源遥感数据和新型遥感技术是满足不断升级的需求的有效手段。多/高光谱成像和单波段激光雷(LightD
- Xarray的维度魔法
Python与遥感
python
前言遥感数据通常是多维的,涉及到时空四维数据(经度、纬度、时间、波段)。在这种复杂的数据结构下,如何高效、清晰地进行分析成为一个难题。今天,我们将介绍xarray库,它是处理这类多维数据的强大工具。xarray不仅能让你的代码更加简洁直观,还能使复杂的数据操作变得优雅。接下来,我们将一起探讨如何使用xarray应对遥感数据分析中的各种挑战。一、为什么选择Xarray?传统numpy数组的痛点:维度
- 【卫星分享】吉林一号卫星介绍
泽奥zeo
吉林一号图像处理RS遥感影像卫星科普
在当今数字化与信息化飞速发展的时代,卫星遥感技术已成为人类探索地球、监测环境、服务社会的重要手段。作为我国自主研发的商用遥感卫星星座,“吉林一号”凭借其卓越的技术性能和广泛的应用场景,成为了我国航天领域的一颗璀璨明珠。它不仅填补了我国在商业遥感领域的空白,还为全球用户提供了高分辨率、高质量的遥感数据服务。接下来,我们将从发展历程、技术特点、成像原理以及数据获取方式四个方面,深入解读“吉林一号”卫星
- Google Earth Engine——导入无云 Sentinel-2 图像和NDVI计算
此星光明
GEE教程训练sentinel人工智能geendvi归一化植被指数波段运算遥感
目录搜索和导入无云Sentinel-2图像Sentinel-2的背景打开GEE界面定义您感兴趣的领域查询Sentinel-2图像的存档过滤图像集合将图像添加到地图视图定义真彩色可视化参数探索影像定义假色可视化参数从波段组合中导出指数NDVI锻炼本实验的目的是介绍GoogleEarthEngine处理环境。在本练习结束时,您将能够搜索、查找和可视化范围广泛的遥感数据集。在第一个练习中,我们将重点关注
- 智能遥感新质生产力:ChatGPT、Python和OpenCV强强联合;空天地遥感数据分析的全流程;地面数据、无人机数据、卫星数据、多源数据等处理
小艳加油
DeepSeekChatGPT遥感遥感新质生产力ChatGPTOpenCV遥感数据处理
通过系统化的模块设计和丰富的实战案例,深入理解和掌握遥感数据的处理与计算。不仅涵盖了从零基础入门Python编程、OpenCV视觉处理的基础知识,还将借助ChatGPT智能支持,引导您掌握遥感影像识别和分析的进阶技术。更为重要的是,通过15个经过精心设计的真实案例,深度参与地质监测、城市规划、农业分析、生态评估等不同场景下的遥感应用实践。层层递进、结构严谨,帮助您系统性掌握从数据预处理、图像增强、
- 《深度揭秘:生成对抗网络如何重塑遥感图像分析精度》
程序猿阿伟
生成对抗网络人工智能机器学习
在当今数字化时代,遥感图像作为获取地球表面信息的重要数据源,广泛应用于城市规划、农业监测、环境评估等诸多领域。然而,如何从海量的遥感数据中提取高精度的信息,一直是学术界和工业界共同面临的挑战。生成对抗网络(GAN)的出现,为提升人工智能在遥感图像分析中的精度开辟了全新的路径。生成对抗网络:技术基石剖析生成对抗网络由生成器(Generator)和判别器(Discriminator)组成,二者通过对抗
- 《深度揭秘:生成对抗网络如何重塑遥感图像分析精度》
人工智能深度学习
在当今数字化时代,遥感图像作为获取地球表面信息的重要数据源,广泛应用于城市规划、农业监测、环境评估等诸多领域。然而,如何从海量的遥感数据中提取高精度的信息,一直是学术界和工业界共同面临的挑战。生成对抗网络(GAN)的出现,为提升人工智能在遥感图像分析中的精度开辟了全新的路径。生成对抗网络:技术基石剖析生成对抗网络由生成器(Generator)和判别器(Discriminator)组成,二者通过对抗
- python:使用gdal和numpy进行遥感时间序列最大值合成
_养乐多_
python处理遥感数据pythonnumpy开发语言
作者:CSDN@_养乐多_本文将介绍使用python编程语言,进行遥感数据时间序列最大值合成的代码。代码中使用了numpy和gdal,通过numpy广播机制实现时间序列最大值合成,并以NDVI时间序列数据为例。代码方便易运行,逻辑简单,速度快。只需要输入单波段遥感数据,就可输出最大值合成影像。输入输出如下图所示,文章目录一、完整代码一、完整代码importosimportglobimportnum
- ASM系列六 利用TreeApi 添加和移除类成员
lijingyao8206
jvm动态代理ASM字节码技术TreeAPI
同生成的做法一样,添加和移除类成员只要去修改fields和methods中的元素即可。这里我们拿一个简单的类做例子,下面这个Task类,我们来移除isNeedRemove方法,并且添加一个int 类型的addedField属性。
package asm.core;
/**
* Created by yunshen.ljy on 2015/6/
- Springmvc-权限设计
bee1314
springWebjsp
万丈高楼平地起。
权限管理对于管理系统而言已经是标配中的标配了吧,对于我等俗人更是不能免俗。同时就目前的项目状况而言,我们还不需要那么高大上的开源的解决方案,如Spring Security,Shiro。小伙伴一致决定我们还是从基本的功能迭代起来吧。
目标:
1.实现权限的管理(CRUD)
2.实现部门管理 (CRUD)
3.实现人员的管理 (CRUD)
4.实现部门和权限
- 算法竞赛入门经典(第二版)第2章习题
CrazyMizzz
c算法
2.4.1 输出技巧
#include <stdio.h>
int
main()
{
int i, n;
scanf("%d", &n);
for (i = 1; i <= n; i++)
printf("%d\n", i);
return 0;
}
习题2-2 水仙花数(daffodil
- struts2中jsp自动跳转到Action
麦田的设计者
jspwebxmlstruts2自动跳转
1、在struts2的开发中,经常需要用户点击网页后就直接跳转到一个Action,执行Action里面的方法,利用mvc分层思想执行相应操作在界面上得到动态数据。毕竟用户不可能在地址栏里输入一个Action(不是专业人士)
2、<jsp:forward page="xxx.action" /> ,这个标签可以实现跳转,page的路径是相对地址,不同与jsp和j
- php 操作webservice实例
IT独行者
PHPwebservice
首先大家要简单了解了何谓webservice,接下来就做两个非常简单的例子,webservice还是逃不开server端与client端。我测试的环境为:apache2.2.11 php5.2.10做这个测试之前,要确认你的php配置文件中已经将soap扩展打开,即extension=php_soap.dll;
OK 现在我们来体验webservice
//server端 serve
- Windows下使用Vagrant安装linux系统
_wy_
windowsvagrant
准备工作:
下载安装 VirtualBox :https://www.virtualbox.org/
下载安装 Vagrant :http://www.vagrantup.com/
下载需要使用的 box :
官方提供的范例:http://files.vagrantup.com/precise32.box
还可以在 http://www.vagrantbox.es/
- 更改linux的文件拥有者及用户组(chown和chgrp)
无量
clinuxchgrpchown
本文(转)
http://blog.163.com/yanenshun@126/blog/static/128388169201203011157308/
http://ydlmlh.iteye.com/blog/1435157
一、基本使用:
使用chown命令可以修改文件或目录所属的用户:
命令
- linux下抓包工具
矮蛋蛋
linux
原文地址:
http://blog.chinaunix.net/uid-23670869-id-2610683.html
tcpdump -nn -vv -X udp port 8888
上面命令是抓取udp包、端口为8888
netstat -tln 命令是用来查看linux的端口使用情况
13 . 列出所有的网络连接
lsof -i
14. 列出所有tcp 网络连接信息
l
- 我觉得mybatis是垃圾!:“每一个用mybatis的男纸,你伤不起”
alafqq
mybatis
最近看了
每一个用mybatis的男纸,你伤不起
原文地址 :http://www.iteye.com/topic/1073938
发表一下个人看法。欢迎大神拍砖;
个人一直使用的是Ibatis框架,公司对其进行过小小的改良;
最近换了公司,要使用新的框架。听说mybatis不错;就对其进行了部分的研究;
发现多了一个mapper层;个人感觉就是个dao;
- 解决java数据交换之谜
百合不是茶
数据交换
交换两个数字的方法有以下三种 ,其中第一种最常用
/*
输出最小的一个数
*/
public class jiaohuan1 {
public static void main(String[] args) {
int a =4;
int b = 3;
if(a<b){
// 第一种交换方式
int tmep =
- 渐变显示
bijian1013
JavaScript
<style type="text/css">
#wxf {
FILTER: progid:DXImageTransform.Microsoft.Gradient(GradientType=0, StartColorStr=#ffffff, EndColorStr=#97FF98);
height: 25px;
}
</style>
- 探索JUnit4扩展:断言语法assertThat
bijian1013
java单元测试assertThat
一.概述
JUnit 设计的目的就是有效地抓住编程人员写代码的意图,然后快速检查他们的代码是否与他们的意图相匹配。 JUnit 发展至今,版本不停的翻新,但是所有版本都一致致力于解决一个问题,那就是如何发现编程人员的代码意图,并且如何使得编程人员更加容易地表达他们的代码意图。JUnit 4.4 也是为了如何能够
- 【Gson三】Gson解析{"data":{"IM":["MSN","QQ","Gtalk"]}}
bit1129
gson
如何把如下简单的JSON字符串反序列化为Java的POJO对象?
{"data":{"IM":["MSN","QQ","Gtalk"]}}
下面的POJO类Model无法完成正确的解析:
import com.google.gson.Gson;
- 【Kafka九】Kafka High Level API vs. Low Level API
bit1129
kafka
1. Kafka提供了两种Consumer API
High Level Consumer API
Low Level Consumer API(Kafka诡异的称之为Simple Consumer API,实际上非常复杂)
在选用哪种Consumer API时,首先要弄清楚这两种API的工作原理,能做什么不能做什么,能做的话怎么做的以及用的时候,有哪些可能的问题
- 在nginx中集成lua脚本:添加自定义Http头,封IP等
ronin47
nginx lua
Lua是一个可以嵌入到Nginx配置文件中的动态脚本语言,从而可以在Nginx请求处理的任何阶段执行各种Lua代码。刚开始我们只是用Lua 把请求路由到后端服务器,但是它对我们架构的作用超出了我们的预期。下面就讲讲我们所做的工作。 强制搜索引擎只索引mixlr.com
Google把子域名当作完全独立的网站,我们不希望爬虫抓取子域名的页面,降低我们的Page rank。
location /{
- java-归并排序
bylijinnan
java
import java.util.Arrays;
public class MergeSort {
public static void main(String[] args) {
int[] a={20,1,3,8,5,9,4,25};
mergeSort(a,0,a.length-1);
System.out.println(Arrays.to
- Netty源码学习-CompositeChannelBuffer
bylijinnan
javanetty
CompositeChannelBuffer体现了Netty的“Transparent Zero Copy”
查看API(
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/buffer/package-summary.html#package_description)
可以看到,所谓“Transparent Zero Copy”是通
- Android中给Activity添加返回键
hotsunshine
Activity
// this need android:minSdkVersion="11"
getActionBar().setDisplayHomeAsUpEnabled(true);
@Override
public boolean onOptionsItemSelected(MenuItem item) {
- 静态页面传参
ctrain
静态
$(document).ready(function () {
var request = {
QueryString :
function (val) {
var uri = window.location.search;
var re = new RegExp("" + val + "=([^&?]*)", &
- Windows中查找某个目录下的所有文件中包含某个字符串的命令
daizj
windows查找某个目录下的所有文件包含某个字符串
findstr可以完成这个工作。
[html]
view plain
copy
>findstr /s /i "string" *.*
上面的命令表示,当前目录以及当前目录的所有子目录下的所有文件中查找"string&qu
- 改善程序代码质量的一些技巧
dcj3sjt126com
编程PHP重构
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。让我们看一些基本的编程技巧: 尽量保持方法简短 尽管很多人都遵
- SharedPreferences对数据的存储
dcj3sjt126com
SharedPreferences简介: &nbs
- linux复习笔记之bash shell (2) bash基础
eksliang
bashbash shell
转载请出自出处:
http://eksliang.iteye.com/blog/2104329
1.影响显示结果的语系变量(locale)
1.1locale这个命令就是查看当前系统支持多少种语系,命令使用如下:
[root@localhost shell]# locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
- Android零碎知识总结
gqdy365
android
1、CopyOnWriteArrayList add(E) 和remove(int index)都是对新的数组进行修改和新增。所以在多线程操作时不会出现java.util.ConcurrentModificationException错误。
所以最后得出结论:CopyOnWriteArrayList适合使用在读操作远远大于写操作的场景里,比如缓存。发生修改时候做copy,新老版本分离,保证读的高
- HoverTree.Model.ArticleSelect类的作用
hvt
Web.netC#hovertreeasp.net
ArticleSelect类在命名空间HoverTree.Model中可以认为是文章查询条件类,用于存放查询文章时的条件,例如HvtId就是文章的id。HvtIsShow就是文章的显示属性,当为-1是,该条件不产生作用,当为0时,查询不公开显示的文章,当为1时查询公开显示的文章。HvtIsHome则为是否在首页显示。HoverTree系统源码完全开放,开发环境为Visual Studio 2013
- PHP 判断是否使用代理 PHP Proxy Detector
天梯梦
proxy
1. php 类
I found this class looking for something else actually but I remembered I needed some while ago something similar and I never found one. I'm sure it will help a lot of developers who try to
- apache的math库中的回归——regression(翻译)
lvdccyb
Mathapache
这个Math库,虽然不向weka那样专业的ML库,但是用户友好,易用。
多元线性回归,协方差和相关性(皮尔逊和斯皮尔曼),分布测试(假设检验,t,卡方,G),统计。
数学库中还包含,Cholesky,LU,SVD,QR,特征根分解,真不错。
基本覆盖了:线代,统计,矩阵,
最优化理论
曲线拟合
常微分方程
遗传算法(GA),
还有3维的运算。。。
- 基础数据结构和算法十三:Undirected Graphs (2)
sunwinner
Algorithm
Design pattern for graph processing.
Since we consider a large number of graph-processing algorithms, our initial design goal is to decouple our implementations from the graph representation
- 云计算平台最重要的五项技术
sumapp
云计算云平台智城云
云计算平台最重要的五项技术
1、云服务器
云服务器提供简单高效,处理能力可弹性伸缩的计算服务,支持国内领先的云计算技术和大规模分布存储技术,使您的系统更稳定、数据更安全、传输更快速、部署更灵活。
特性
机型丰富
通过高性能服务器虚拟化为云服务器,提供丰富配置类型虚拟机,极大简化数据存储、数据库搭建、web服务器搭建等工作;
仅需要几分钟,根据CP
- 《京东技术解密》有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的12月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
12月试读活动回顾:
http://webmaster.iteye.com/blog/2164754
本次技术图书试读活动获奖名单及相应作品如下:
一等奖(两名)
Microhardest:http://microhardest.ite