三次样条拟合典型实例

1设计目的、要求

   对龙格函数在区间[-1,1]上取的等距节点,分别作多项式插值、三次样条插值和三次曲线拟合,画出及各逼近函数的图形,比较各结果。

2设计原理

(1)   多项式插值:利用拉格朗日多项式插值的方法,其主要原理是拉格朗日多项式,即:

表示待插值函数的个节点,

,其中;

 

(2)   三次样条插值:三次样条插值有三种方法,在本例中,我们选择第一边界条件下的样条插值,即两端一阶导数已知的插值方法:

 

 

(3)三次曲线拟合:本题中采用最小二乘法的三次多项式拟合。最小二乘拟合是利用已知的数据得出一条直线或者曲线,使之在坐标系上与已知数据之间的距离的平方和最小。在本题中,n= 10,故有11个点,以这11个点的和值为已知数据,进行三次多项式拟合,设该多项式为,该拟合曲线只需的值最小即可。

3采用软件、设备

   计算机、matlab软件

4设计内容

1、多项式插值:

在区间上取的等距节点,带入拉格朗日插值多项式中,求出各个节点的插值,并利用matlab软件建立m函数,画出其图形。

在matlab中建立一个lagrange.m文件,里面代码如下:

%lagrange 函数

functiony=lagrange(x0,y0,x)

n=length(x0);m=length(x);

for i=1:m

    z=x(i);

    s=0.0;

    for k=1:n

        p=1.0;

        for j=1:n

            if j~=k

                p=p*(z-x0(j))/(x0(k)-x0(j));

            end

        end

        s=p*y0(k)+s;

    end

    y(i)=s;

end

 

 

建立一个polynomial.m文件,用于多项式插值的实现,代码如下:

%lagrange插值

x=[-1:0.2:1];

y=1./(1+25*x.^2);

x0=[-1:0.02:1];

y0=lagrange(x,y,x0);

y1=1./(1+25*x0.^2);

plot(x0,y0,'--r')

%插值曲线

hold on

%原曲线

plot(x0,y1,'-b')

 

运行duoxiangshi.m文件,得到如下图形:

 

 

 三次样条拟合典型实例_第1张图片

 

2、三次样条插值:

所谓三次样条插值多项式是一种分段函数,它在节点分成的每个小区间上是3次多项式,其在此区间上的表达式如下:

 

因此,只要确定了的值,就确定了整个表达式,的计算方法如下:

令:

 

则满足如下个方程:

 

对于第一种边界条件下有

 

如果令那么解就可以为

 

求函数的二阶导数:

>> syms x

>> f=sym(1/(1+25*x^2))

 

f =

1/(1+25*x^2)

 

>> diff(f)

 

ans =

 

-(50*x)/(25*x^2 + 1)^2

将函数的两个端点,代入上面的式子中:

f’(-1)= 0.0740

f’(1)=-0.0740

 

求出从-1到1的n=10的等距节点,对应的x,y值

 对应m文件代码如下:

 

for x=-1:0.2:1

   y=1/(1+25*x^2)

end

y =

 

 

得出

x=-1 -0.8  -0.6  -0.4 -0.2  0  0.2 0.4  0.6  0.8  1

y=0.0385 0.0588  0.1  0.2 0.5  1  0.5 0.2  0.1  0.0588 0.0385

 

 

编写m文件Three_Spline.m

x=linspace(-1,1,11);

y=1./(1+25*x.^2);

[m,p]=scyt1(x,y,0.0740,-0.0740);

hold on

x0=-1:0.01:1;

y0=1./(1+25*x0.^2);

plot(x0,y0,'--b')

得到如下图像:

 

.

其中蓝色曲线为原图,红色曲线为拟合后的图像。

 

3、三次曲线拟合:

这里我们使用最小二乘法的3次拟合

建立一个Three_fitting .m文件,代码如下

%主要代码

x=[-1-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1];

y=[0.03850.0588 0.1 0.2 0.5 1 0.5 0.2 0.1 0.0588 0.0385];

a=polyfit(x,y,3);

x1=[-1:0.01:1];

y1=a(4)+a(3)*x1+a(2)*x1.^2+a(1)*x1.^3;

x0=[-1:0.01:1];

y0=1./(1+25*x0.^2)

%原曲线

plot(x0,y0,'-r')

holdon

%三次拟合曲线

plot(x1,y1,'-b')

 

上图中,蓝色部分为三次拟合曲线,红色部分为原曲线

6结果分析

拉格朗日插值的优点是对于某一区域,不限于被估计点周围,公式简单易实施。一般认为n的次数越高,逼近的精度就越好,但在本题中,对龙格函数,中间部分插值效果比较好,而对于两端,插值结果是非常不理想的,即龙格现象。样条函数可以给出光滑的插值曲线,从本题中就能体现出来。从以上图形可以看出,三次样条插值的图形是比较逼近于原图的,收敛性相对而言是非常好的,但在本题中,仅将原区间分成10个等距区间,因此,逼近效果还不是特别理想,当我们将n增大时,插值后的曲线越逼近于原曲线。总的来说,三次样条插值的稳定性比较好,收敛性比较强。

在这三种方法中,三次曲线拟合的效果是最差的,所得的图形与原曲线差距甚远。最小二乘法中,并不要求拟合后的曲线经过所有已知的点,只需要拟合多项式上的点在某种标准上与定点之间的差距最小即可,因此与原曲线的逼近程度是最差的。最小二乘法的多项式拟合只适用于多项式,而本题中的函数并不是一个多项式,因此,不建议使用最小二乘法拟合。

 

参考文献:

[1] 李庆扬 王能超等.数值分析[M].清华大学出版社

[2] 吴振远.科学计算实验指导书 基于MATLAB数值分析[M]. 中国地质大学出版社

[3] 宋叶志. MATLAB数值分析与应用[M].机械工业出版社 , 2009.07

 

附录

三次样条插值主要代码:

function [m,p]=scyt1(x,y,df0,dfn)

n=length(x);

r=ones(n-1,1);

u=ones(n-1,1);

d=ones(n,1);

r(1)=1;

d(1)=6*((y(2)-y(1))/(x(2)-x(1))-df0)/(x(2)-x(1));

u(n-1)=1;

d(n)=6*(dfn-(y(n)-y(n-1))/(x(n)-x(n-1)))/(x(n)-x(n-1));

for k=2:n-1                  

   u(k-1)=(x(k)-x(k-1))/(x(k+1)-x(k-1)); r(k)=(x(k+1)-x(k))/(x(k+1)-x(k-1));

   d(k)=6*((y(k+1)-y(k))/(x(k+1)-x(k))-(y(k)-y(k-1))/(x(k)-x(k-1)))/(x(k+1)-x(k-1));

end

A=eye(n,n)*2;

for k=1:n-1

   A(k,k+1)=r(k);

   A(k+1,k)=u(k);

end

m=A\d;

ft=d(1);

syms t

for k=1:n-1           %求s(x)即插值多项式

   p(k,1)=m(k)/(6*(x(k+1)-x(k)));

   p(k,2)=m(k+1)/(6*(x(k+1)-x(k)));

   p(k,3)=(y(k)-m(k)*(x(k+1)-x(k))^2/6)/(x(k+1)-x(k));

   p(k,4)=(y(k+1)-m(k+1)*(x(k+1)-x(k))^2/6)/(x(k+1)-x(k));

 sx(k)=p(k,1)*(x(k+1)-t)^3+p(k,2)*(t-x(k))^3+p(k,3)*(x(k+1)-t)+p(k,4)*(t-x(k));

end

kmax=1000;

xt=linspace(x(1),x(n),kmax);

for i=1:n-1                   %出点xt对应的y值

   for k=1:kmax

     if x(i)<=xt(k)&xt(k)<=x(i+1)

        fx(k)=subs(sx(i),xt(k));

   end

end

end

plot(xt,fx,'r');  xlabel('x');

ylabel('y');  title('f');

text(x(fix(n/2)),y(fix(n/2)),'f')

hold on

plot(x,y,'*')

hold off

获取更多帮主请关注小程序

 

你可能感兴趣的:(编程,算法,c++,三次样条拟合,样条曲线,Spline,Curves)