select函数原型:
int select(int maxfdp1, fd_set *readset, fd_set *writeset, fd_set *exceptset,struct timeval *timeout);
select函数的参数将告诉内核:
(1) 我们所关心的描述符。
(2) 对于每个描述符我们所关心的条件(是否读一个给定的描述符?是否想写一个给定的描述符?是否关心一个描述符的异常条件?)。
(3) 希望等待多长时间(可以永远等待,等待一个固定量时间,或完全不等待)
select从内核返回后内核会告诉我们:
(1) 已准备好的描述符的数量。
(2) 哪一个描述符已准备好读、写或异常条件。
具体解释select的参数:
(1)intmaxfdp是一个整数值,是指集合中所有文件描述符的范围,即所有文件描述符的最大值加1,不能错。
说明:对于这个原理的解释可以看上边fd_set的详细解释,fd_set是以位图的形式来存储这些文件描述符。maxfdp也就是定义了位图中有效的位的个数。
(2)fd_set*readfds是指向fd_set结构的指针,这个集合中应该包括文件描述符,我们是要监视这些文件描述符的读变化的,即我们关心是否可以从这些文件中读取数据了,如果这个集合中有一个文件可读,select就会返回一个大于0的值,表示有文件可读;如果没有可读的文件,则根据timeout参数再判断是否超时,若超出timeout的时间,select返回0,若发生错误返回负值。可以传入NULL值,表示不关心任何文件的读变化。
(3)fd_set*writefds是指向fd_set结构的指针,这个集合中应该包括文件描述符,我们是要监视这些文件描述符的写变化的,即我们关心是否可以向这些文件中写入数据了,如果这个集合中有一个文件可写,select就会返回一个大于0的值,表示有文件可写,如果没有可写的文件,则根据timeout参数再判断是否超时,若超出timeout的时间,select返回0,若发生错误返回负值。可以传入NULL值,表示不关心任何文件的写变化。
(4)fd_set*errorfds同上面两个参数的意图,用来监视文件错误异常文件。
中间的三个参数 readset, writset, exceptset,指向描述符集。这些参数指明了我们关心哪些描述符,和需要满足什么条件(可写,可读,异常)。一个文件描述集保存在 fd_set 类型中。fd_set类型变量每一位代表了一个描述符。我们也可以认为它只是一个由很多二进制位构成的数组。如下图所示:
timeout结构:
struct timeval{
long tv_sec; /秒 /
long tv_usec; /微秒 /
}
timeout == NULL 等待无限长的时间。等待可以被一个信号中断。当有一个描述符做好准备或者是捕获到一个信号时函数会返回。如果捕获到一个信号, select函数将返回 -1,并将变量 erro设为 EINTR。
timeout->tv_sec == 0 &&timeout->tv_usec == 0不等待,直接返回。加入描述符集的描述符都会被测试,并且返回满足要求的描述符的个数。这种方法通过轮询,无阻塞地获得了多个文件描述符状态。
timeout->tv_sec !=0 ||timeout->tv_usec!= 0 等待指定的时间。当有描述符符合条件或者超过超时时间的话,函数返回。在超时时间即将用完但又没有描述符合条件的话,返回 0。对于第一种情况,等待也会被信号所中断。
select原理:
理解select模型:
理解select模型的关键在于理解fd_set,为说明方便,取fd_set长度为1字节,fd_set中的每一bit可以对应一个文件描述符fd。则1字节长的fd_set最大可以对应8个fd。
(1)执行fd_set set;FD_ZERO(&set);则set用位表示是0000,0000。
(2)若fd=5,执行FD_SET(fd,&set);后set变为0001,0000(第5位置为1)
(3)若再加入fd=2,fd=1,则set变为0001,0011
(4)执行select(6,&set,0,0,0)阻塞等待
(5)若fd=1,fd=2上都发生可读事件,则select返回,此时set变为0000,0011。注意:没有事件发生的fd=5被清空。
基于上面的讨论,可以轻松得出select模型的特点:
(1)可监控的文件描述符个数取决与sizeof(fd_set)的值。我这边服务器上sizeof(fd_set)=512,每bit表示一个文件描述符,则我服务器上支持的最大文件描述符是512*8=4096。据说可调,另有说虽然可调,但调整上限受于编译内核时的变量值。
(2)将fd加入select监控集的同时,还要再使用一个数据结构array保存放到select监控集中的fd,一是用于再select返回后,array作为源数据和fd_set进行FD_ISSET判断。二是select返回后会把以前加入的但并无事件发生的fd清空,则每次开始 select前都要重新从array取得fd逐一加入(FD_ZERO最先),扫描array的同时取得fd最大值maxfd,用于select的第一个参数。
(3)可见select模型必须在select前循环array(加fd,取maxfd),select返回后循环array(FD_ISSET判断是否有时间发生)。
应用程序调用select() 函数,系统调用陷入内核
系统调用:SYSCALL_DEFINE5(sys_select()) ->core_sys_select() -> do_select() ->fop->poll()
select 用于查询设备的状态,以便用户程序获知是否能对设备进行非阻塞的访问,需要设备驱动程序中的poll 函数支持。 驱动程序中 poll 函数中最主要用到的一个 API 是 poll_wait,其原型如下:
void poll_wait(struct file filp, wait_queue_heat_t *queue, poll_table wait);
poll_wait 函数所做的工作是把当前进程添加到 wait 参数指定的等待列表(poll_table)中。
需要说明的是,poll_wait 函数并不阻塞,程序中 poll_wait(filp, &outq, wait)这句话的意思并不是说一直等待 outq 信号量可获得,真正的阻塞动作是上层的 select/poll 函数中完成的。select/poll 会在一个循环中对每个需要监听的设备调用它们自己的 poll 支持函数以使得当前进程被加入各个设备的等待列表。若当前没有任何被监听的设备就绪,则内核进行调度(调用 schedule)让出 cpu 进入阻塞状态,schedule 返回时将再次循环检测是否有操作可以进行,如此反复;否则,若有任意一个设备就绪,select/poll 都立即返回。
以上内容参考:
http://www.cnblogs.com/zhuyp1015/archive/2012/05/31/2529079.html
http://blog.csdn.net/tianmohust/article/details/6595998
http://www.cnblogs.com/jinmu190/archive/2010/11/21/1883184.html