- 写作进阶模式浅析
能源小李
上篇文章对目前写作中的差距进行了思考总结,主要是三方面差距:文字数量差距、干练语言与固有文风的差距、美化排版的差距。那么我们该如何针对性的制定写作进阶计划,该如何不断提高写作能力,构建自己成熟的写作模式呢?本文将进行简要分析。图片发自App写作进阶模式就是指针对我们自身写作技能提高的系统的方式方法。结合自身对写作的理解,从以下三个层面构建写作进阶模式。【进阶一锤炼提高写作思考力】写作本身是一种思考
- 浅析PGC、UGC、OGC、KOL、公域流量、私域流量
七喜f
2019年12月5日,星期四,晴,很温暖以下是我今日份的学习任务:PGC:(Professionally-generatedContent,专业生产内容,也称PPC,Professionally-producedContent)PGC为专业生产内容,常见于个人自媒体的变现转化;UGC:(User-generatedContent,用户生产内容,也称UCC,User-createdContent)U
- RAID的介绍和实战操作
一RAID的介绍RAID(RedundantAarryofIndependentDisks):廉价磁盘冗余阵列是一种通过将多个物理磁盘组合成一个逻辑单元来提高数据存储性能、可靠性或两者兼顾的技术。作用:提高性能:通过并行读写(数据分块)加速数据访问。增强容错能力:通过冗余数据(如镜像或校验)防止磁盘故障导致的数据丢失。扩展存储容量:将多个磁盘合并为更大逻辑单元。(简单说就是提高容错以及读写速率)类
- WIFI7新特性浅析及Linux内核对其的支持
winter91
LinuxNetWorklinuxWIFI
WIFI7新特性浅析及Linux内核对其的支持|DD'NotesWIFI7新特性浅析及Linux内核对其的支持wifi7新特性Wi-Fi7(IEEE802.11be)作为下一代无线网络标准,在速度、延迟、容量和稳定性等方面实现了显著提升。以下是其核心新特性:1.更高带宽与速率320MHz信道带宽支持连续320MHz或非连续160+160MHz带宽(6GHz频段),相比WiFi6的160MHz实现速
- Pandas 学习教程
_pass_
Data-Alaysispandas信息可视化
目录定义基本操作一维数组操作二维数组操作数据选择过滤数据处理数据清洗数据转换数据分析排序分组聚合数据透视表高级操作合并数据时间序列处理自定义函数调用数据可视化集成数据导出和导入大数据分块处理定义全称:'paneldata'and'pythondataanalysis'Analy:Series(一维数据)、DataFrame(二维数据)主要应用:数据清洗:处理缺失数据、重复数据等数据转换:改变数据的
- Semantic text 就是那么强大,还附带一包( BBQ )薯片!配有可配置的分块设置和索引选项。
Elastic 中国社区官方博客
ElasticsearchAI大数据elasticsearch搜索引擎全文检索人工智能ai图搜索
作者:来自ElasticKathleenDeRusso语义文本搜索现在可以自定义,支持可配置的分块设置和索引选项,用于自定义向量量化,使semantic_text在专业用例中更强大。Elasticsearch拥有大量新功能,帮助你为你的用例构建最佳搜索解决方案。深入查看我们的示例笔记本以了解更多信息,开始免费云试用,或者立即在本地机器上体验Elastic。随着Elasticsearch8.18和9
- 【AI大模型前沿】OmniAudio:阿里通义实验室的空间音频生成模型,开启沉浸式体验新时代
寻道AI小兵
AI大模型-前沿技术追踪人工智能音视频开源AIGC语言模型
系列篇章No.文章1【AI大模型前沿】深度剖析瑞智病理大模型RuiPath:如何革新癌症病理诊断技术2【AI大模型前沿】清华大学CLAMP-3:多模态技术引领音乐检索新潮流3【AI大模型前沿】浙大携手阿里推出HealthGPT:医学视觉语言大模型助力智能医疗新突破4【AI大模型前沿】阿里QwQ-32B:320亿参数推理大模型,性能比肩DeepSeek-R1,免费开源5【AI大模型前沿】TRELLI
- RAG实战指南 Day 11:文本分块策略与最佳实践
在未来等你
RAG实战指南RAG检索增强生成文本分块语义分割文档处理NLP人工智能
【RAG实战指南Day11】文本分块策略与最佳实践文章标签RAG,检索增强生成,文本分块,语义分割,文档处理,NLP,人工智能,大语言模型文章简述文本分块是RAG系统构建中的关键环节,直接影响检索准确率。本文深入解析5种主流分块技术:1)固定大小分块的实现与调优技巧;2)基于语义的递归分割算法;3)文档结构感知的分块策略;4)LLM增强的智能分块方法;5)多模态混合内容处理方案。通过电商知识库和科
- 6. ETL Pipeline-SpringAI实战
起凡7
SpringAIetl嵌入式实时数据库aispring语言模型
ETLPipelineETL是提取、转换、加载的缩写,从原始的文档到数据库需要经历提取(.doc、.ppt、.xlsx等)、转换(数据结构化、清理数据、数据分块)、写入向量数据库。这个过程可以进行多种处理,确保最后的数据适合AI问答。SpringAI提供了ETL框架。它是搭建知识库框架的基石。框架介绍DocumentReader:文档读取器,读取文档,比如PDF、Word、Excel等。如:Jso
- 电商架构浅析
快乐非自愿
架构大数据
前言什么是电商,电商有哪些分类,以及一个完整的电商平台应该由哪些模块组成?本文将围绕电商平台系统的整体架构展开分析。一、简介1.什么是电商简单说就是通过网络进行的商务活动。以前的人都是通过现金进行交易,就是所谓的一手交钱、一手交货。而电商,则是通过通过网上商城、物流配送、线上资金结算等过程来完成交易。本质就是买卖双方围绕线上商品进行交易履约的过程。2.电商分类二、业务流程分析目前的电商的种类很多,
- Vulkan多线程录制Command Buffer高效指南
你一身傲骨怎能输
渲染管线CommandBuffer
文章摘要Vulkan支持多线程并行录制CommandBuffer以提升CPU效率,需遵循以下原则:每个线程使用独立CommandPool避免竞争合理分配渲染任务确保负载均衡避免线程间共享资源修改主线程统一提交所有CommandBuffer实现时需为每个线程创建独立CommandPool和CommandBuffer,任务分块后多线程并行录制,最后同步提交。注意资源隔离、同步机制及CommandPoo
- Postgresql快速同步大量数据方案浅析
行星008
数据库postgresql数据库
目录推荐方案:并行导出导入+网络加速方案优势:详细步骤1.数据选择与准备2.并行数据导出(111服务器)3.高效网络传输4.并行数据导入(112服务器)5.性能优化参数增量同步方案(可选)方法1:逻辑复制(适合持续同步)方法2:增量更新脚本(适合定时同步)性能优化技巧验证与监控预期性能指标故障处理针对PostgreSQL14.3环境中从111服务器同步部分数据(约1000GB)到112服务器的需求
- 浅析Nordic nRF5 SDK例程架构(三)
Real你老王
单片机c#
浅析NordicnRF5SDK例程架构第一章前言及bsp例程浅析第二章ble_app_uart例程浅析第三章添加电池电量服务(BAS)第四章如何使用的修改协议栈(以SESIDE为例)文章目录浅析NordicnRF5SDK例程架构一、需要的头文件二、定义电池的电量服务实例三、服务初始化四、sdk_config.h文件配置五、修改效果六、可能出现的Debug汇总本文紧接上篇,将主要介绍如何在nRF5_
- 浅析Nordic nRF5 SDK例程架构(四)
Real你老王
架构
浅析NordicnRF5SDK例程架构第一章前言及bsp例程浅析第二章ble_app_uart例程浅析第三章添加电池电量服务(BAS)第四章如何使用的修改协议栈(以SESIDE为例)文章目录浅析NordicnRF5SDK例程架构一、概述二、修改方法三、可能出现的Debug汇总本文紧接上篇,将主要介绍如何在nRF5_sdk的ble_peripheral\ble_app_uart工程为例,在NUS服务
- 浅析Nordic nRF5 SDK例程架构(二)
Real你老王
架构单片机嵌入式硬件
浅析NordicnRF5SDK例程架构第一章前言及bsp例程浅析第二章ble_app_uart例程浅析第三章添加电池电量服务(BAS)第四章如何使用的修改协议栈(以SESIDE为例)文章目录浅析NordicnRF5SDK例程架构二、ble_app_uart例程浅析二、bsp例程浅析1.ble_app_uart例程main2.串口初始化3.Log模块初始化4.初始化低功耗管理模块5.初始化BLE协议
- 常见构建工具使用与原理浅析
1.初版构建工具1.1.GruntGrunt是前端第一个正式的构建工具,它基于Node.js开发。Grunt同样是基于插件实现功能拓展增强,但对于像Webpack上很多能力,如HMR、ScopeHoisting等都是不支持的,可以作为学习Webpack前的了解。Grunt更像是一种自动化的配置工具集,就如官方所说,Grunt是TheJavaScriptTaskRunner,每个Grunt任务通常必
- 区间求最值问题高效解决方法
东皇太星
python
对于区间求最值场景,如果区间不定长度的,可以使用稀疏表进行求解,如果区间是固定长度的,则可以使用分块的思想(与稀疏表原理类似),都是通过压缩状态个数,1关于稀疏表的原理详见:稀疏表(SparseTable,ST原理及应用场景下面是一个稀疏表的python实现classSolution:def__init__(self,nums):self.nums=numsself.init_value=-999
- 大图处理优化:低分加载、Lazy Decode 与缩放算法加速实践
观熵
影像技术全景图谱:架构调优与实战算法影像Camera
大图处理优化:低分加载、LazyDecode与缩放算法加速实践关键词:大图加载优化、LazyDecode、Region解码、缩放算法、Bitmap分块、滑动加载、内存控制、图像性能优化摘要:在相册、图片浏览器、拍摄预览和编辑器中,用户经常会处理分辨率高达上千万像素的照片(如48MP、64MP、RAW文件等),这类“大图”在加载、缩放、平移过程中容易造成内存抖动、页面卡顿甚至OOM崩溃。本篇文章将围
- 计算机视觉中的Transformer:ViT模型详解与代码实现
AI大模型应用工坊
计算机视觉transformer人工智能ai
计算机视觉中的Transformer:ViT模型详解与代码实现关键词:计算机视觉、Transformer、ViT、自注意力机制、图像分块摘要:传统卷积神经网络(CNN)统治计算机视觉领域多年,但2020年一篇《AnImageisWorth16x16Words:TransformersforImageRecognitionatScale》的论文打破了这一格局——它将NLP领域的Transformer
- FPGA实现JPEG编码器的完整项目指南
本文还有配套的精品资源,点击获取简介:JPEG编码是一种广泛使用的数字图像压缩技术,通过在FPGA上实现该编码器,可以为嵌入式系统提供高效的图像处理。FPGA的可编程逻辑单元使其成为实现JPEG编码的理想平台。实现过程包括颜色空间转换、分块、离散余弦变换(DCT)、量化和熵编码等关键步骤。此外,testbench仿真用于验证设计的功能和性能,而资源优化确保了设计的高效性和低功耗。该实现过程需要深入
- 【Java面试】10GB,1GB内存,如何排序?
用心分享技术
Java面试题java面试
一、外部排序步骤1️⃣分块排序(分割阶段)步骤:将10GB文件分割为多个内存可容纳的小块(如每个块900MB,共约11块),避免内存溢出。逐块读取到内存,使用高效排序算法(如Collections.sort()或Arrays.sort())排序。将排序后的块写入临时文件,生成11个有序子文件。关键代码:ListsplitAndSort(Fileinput)throwsIOException{Lis
- 浅析基于深度学习算法的日语OCR技术原理及其应用场景
AI人工智能+
TEL18600524535ocr文字识别人工智能
在全球数字化进程加速的今天,日语作为世界第九大使用语言,其文字处理的自动化需求日益凸显,日语OCR技术应运而生。中科逸视日文OCR技术是一款基于先进人工智能技术的专业光学字符识别(OCR)解决方案,专门针对日语文本的数字化需求设计开发。能够将纸质文档、图片中的日文内容快速准确地转换为可编辑、可搜索的电子文本,大幅提升日文资料的处理效率,为企业国际化运营和个人日语学习提供强有力的技术支持。技术原理中
- 浅析通用文字识别OCR技术的工作过程及其应用场景
AI人工智能+
TEL18600524535人工智能ocr计算机视觉图像处理文字识别
通用文字识别技术作为人工智能领域的重要分支,正深刻地改变着人们的生活与工作方式。通用文字识别技术基于光学字符识别(OCR)技术发展而来,其核心原理是通过对图像中文字的特征提取与分析,将其转化为计算机能够理解和处理的文本信息。这一过程涉及多个关键步骤:图像预处理:输入的图片可能存在光照不均、倾斜、模糊等问题,预处理阶段会对图像进行灰度化、降噪、二值化、倾斜校正等操作,以提高文字的清晰度和可识别性。例
- 大文件上传类设计(OC实现)
瓜子三百克
iOS开发iosoracleobjective-c
下面我将设计一个支持断点续传、多线程上传的大文件上传类,采用Objective-C实现,考虑线程安全、数据库持久化和高效上传。设计概览类文件划分FileUploadManager.h/m-上传任务管理中心FileUploadTask.h/m-单个上传任务控制ChunkUploadOperation.h/m-分块上传操作UploadDatabaseManager.h/m-数据库操作FileChunk
- Advanced RAG:下一代检索增强生成技术详解
北辰alk
AI人工智能
文章目录一、核心演进维度二、关键技术组件1.智能检索子系统2.动态知识管理3.生成控制器三、核心增强技术1.递归检索(RecursiveRetrieval)2.假设性检索(HypotheticalDocumentEmbedding)3.自适应分块(AdaptiveChunking)四、生产级架构设计完整系统架构关键优化点五、典型应用场景1.专业领域问答系统2.企业知识中枢3.实时决策支持六、评估指
- 【LLaMA 3实战:检索增强】13、LLaMA 3+RAG精准问答系统优化全指南:从检索增强到可信度提升实战
无心水
LLaMA3模型实战专栏llamaLLaMA3对话能力全解析LLaMA3AI大模型LLaMa3实战程序员的AI开发第一课AI入门
一、RAG赋能LLaMA问答系统的核心价值与瓶颈突破(一)准确性提升的三大核心挑战问题类型典型表现传统方案局限RAG+LLaMA3解决方案知识滞后型错误回答包含过时技术细节依赖模型预训练更新动态检索最新文档库上下文误解曲解问题意图或检索内容固定分块导致语义断裂语义感知分块+动态查询扩展事实幻觉虚构不存在的概念或数据缺乏外部事实校验溯源标注+多模型交叉验证(二)RAG与LLaMA3的协同优势动态知识
- Mac mini 跑 DeepSeek R1 及 QwQ-32B模型实测报告
强哥之神
GPTmacosGPUdeepseek人工智能语言模型LLM
测试对象:2025款Macmini(M4/M4Pro芯片)测试模型:DeepSeek-R1(14B/32B)、QwQ-32B(原版/量化版)测试目标:硬件性能适配性、推理速度、内存占用及优化方案一、Macmini硬件配置概览配置项M4基础款(16GB)M4Pro高配(32GB/64GB)芯片M4(10核CPU/10核GPU)M4Pro(14核CPU/20核GPU)内存16GB统一内存32GB/64
- RAG 每日一技(一):你的第一步就走错了?聊聊最基础的文本分块
ezl1fe
RAG每日一技人工智能后端语言模型
前言兄弟们,最近大模型是真火啊!但光火有什么用,咱得把它用在自己的项目里,解决实际问题才算牛。于是很多人撸起袖子就开干,想让大模型能回答自己文档、知识库里的问题。理想很丰满:我扔一堆文档进去,模型“嗖”一下就学会了,然后就有问必答,跟专家一样。现实很骨感:不管怎么喂数据,模型要么回答得牛头不对马嘴,要么干脆说“我不知道”。是不是感觉很熟悉?问题到底出在哪?很多时候,问题并非出在模型本身,而是出在了
- RAG系列:提升RAG检索力:三大Query变形术,助你玩转AI知识检索!
数智前沿
数字化转型人工智能RAG
之前的帖子大多在优化向量化的过程,让文本内容分块更合理和更精准,本篇重点介绍使用RAG时如何优化提示词,以提高查询结果的精准度!一、RAG的“灵魂拷问”:你真的会提问吗?在AI时代,信息检索的效率和质量,80%取决于你“怎么问”。RAG系统的本质,就是“你问得好,我答得妙”。但现实往往是——用户提问:“AI会抢我饭碗吗?”检索系统:一脸懵逼,给你扔来一堆“AI是什么”“就业趋势”……用户:???这
- 浅析JVM虚拟机之一
�欢快↑㎡
jvmjavalinux
1.为什么要学习JVM可以深入了解Java,分析字节码,得到准确的结论可以提升排查问题的能力,可能出现内存溢出,GC频率导致响应慢等等2.JVM的部分核心2.1类装载子系统类装载子系统主要功能是查找并验证类文件、完成相关内存空间的分配和对象赋值。2.2运行时数据区类文件加载到内存之后由运行时数据区来完成数据存储和数据交换。运行时数据区又分为线程共享内存区和线程隔离内存区。线程共享内存区包括方法区(
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比