- 008 【入门】算法和数据结构简介
要天天开心啊
算法专栏算法数据结构
算法与数据结构系统概览|[算法]-[基础]-[通用]一、算法分类与应用1.硬计算类算法|[算法]-[中级]-[通用]特点应用场景复杂度特征-精确求解问题-可能带来较高计算复杂度-大厂笔试/面试-ACM竞赛-所有程序员岗位必考⏱️通常为O(n)~O(n²)//[示例]快速排序算法-分治思想核心实现publicvoidquickSort(int[]arr,intleft,intright){if(le
- 【Linux】ghb工具
nanguochenchuan
Linux操作系统linux运维服务器
GDB简介GDB(GNUDebugger)是Linux系统中最强大的命令行调试工具,由GNU项目开发。作为程序员调试C/C++程序的利器,GDB能帮助你:定位程序崩溃原因分析程序运行状态跟踪变量值变化检测内存错误安装与配置安装方法#Ubuntu/Debiansudoaptinstallgdb#CentOS/RHELsudoyuminstallgdb#ArchLinuxsudopacman-Sgdb
- 中国计算机学会推荐国际学术会议-体系结构相关(含投稿截至时间)
HiAallen
事务编辑器
Ref:CCF推荐国际学术刊物目录-中国计算机学会中国计算机学会推荐国际学术会议(●计算机体系结构/并行与分布计算/存储系统)A类序号刊物名称刊物全称出版社投稿截止时间地址1PPoPPACMSIGPLANSymposiumonPrinciples&PracticeofParallelProgrammingACM2022-8-17dblp:PPOPP2FASTConferenceonFileandS
- 2019 CCF 推荐国际学术期刊&会议(计算机体系结构/并行与分布计算/存储系统)
漓艾初
CCF
中国计算机学会推荐国际学术期刊&会议直接去这里找,全部都有https://www.ccf.org.cn/Academic_Evaluation/By_category/计算机体系结构/并行与分布计算/存储系统期刊A类序号刊物简称刊物全称出版社网址1TOCSACMTransactionsonComputerSystemsACMhttp://dblp.uni-trier.de/db/journals/
- 蔡高厅老师 - 高等数学-阅读笔记 - 01 - 前言、函数【视频第01、02、03、】
Franklin
数学线性代数
高等数学前言;196学时,每周6课主要内容:上册一元、多元函数数,微分学、积分学、矢量代数、空间解析几何无穷级数、微分方程,多元函数微分学和积分学目的:高等数学3基:1高等数学的基本知识2高度数学的基本理论3高等数学的基本计算方法提高数学素养培养:抽象思维、逻辑推理、辩证的思想方法、空间想象能力、分析问题、解决问题的能力为进一步学习打下必要的学习基础和初等数学不同,研究的不是常量而是变量,变量和变
- 认识Jacobian
一碗姜汤
统计学习线性代数矩阵
Jacobian(雅可比矩阵)是数学中用于描述多元函数在某一点处导数的重要概念,广泛应用于微积分、微分几何、数值分析等领域。以下从定义、数学表达、几何意义、应用场景等方面详细解析:一、定义与数学表达1.基本定义若有一个从欧式空间Rn\mathbb{R}^nRn到Rm\mathbb{R}^mRm的多元函数:f:Rn→Rmf:\mathbb{R}^n\to\mathbb{R}^mf:Rn→Rm,其分量
- 前缀和与后缀和(HDU6186)
MatrixYg
HDU水题
题目链接。题目的大意是:给一个数组,和一个数组的下标·,然后在数组中去掉这个下标对应的元素,把剩下的元素全部做&/|/^这三种位运算,输出位运算之后的结果。数据范围1e5.当然暴力是不可行的。首先需要知道的是:一个数&自己不变,|自己也是不变,^自己是0。这样我们对于每一种运算维护两个数组,一个前缀数组,一个后缀数组。这样两个结合起来可以达到去除任意一个中间元素的效果。//我们只证明一种情况,其他
- 代数几何:自然曲线的数学研究
AI天才研究院
ChatGPT计算AI人工智能与大数据javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
代数几何:自然曲线的数学研究关键词:代数几何、自然曲线、数学研究、算法、应用摘要:本文深入探讨了代数几何在自然曲线研究中的应用,从基础概念到复杂算法,再到实际项目实战,全面揭示了代数几何在数学研究中的核心地位和深远影响。本文旨在为读者提供一份系统、完整、易于理解的技术指南,帮助深入理解自然曲线的数学本质及其在计算机科学中的广泛应用。目录大纲设计思路为了设计出《代数几何:自然曲线的数学研究》这本书的
- 数学:线性相关和线性无关的关系
千码君2016
数学线性代数系数唯一性定义法矩阵秩法行列式法高维空间的基线性方程组
在线性代数中,线性无关是描述向量组性质的重要概念,它反映了向量组中向量之间是否存在“冗余”或“依赖”关系。以下从定义、判断方法、几何意义及应用等方面详细说明:一、线性无关的定义才成立,则称该向量组线性无关。反之,若存在不全为0的系数使等式成立,则称向量组线性相关。二、核心理解:线性无关的本质三、线性无关的判断方法1.定义法(直接验证)2.矩阵秩法
- manjaro安装微软雅黑字体_开始使用 Manjaro(添加源+字体渲染去模糊+软件安装+优化配置+常见错误)(30)...
真的是单大宝
manjaro安装微软雅黑字体
1.添加archlinux镜像源1.步骤一向/etc/pacman.d/mirrorlist中添加国内镜像地址1.1方法1:自动添加1、输入如下命令查看国内镜像源,并按质量排序:sudopacman-mirrors-i-cChina-mrank,之后会弹出一个窗口,可以选择想要的镜像源,选择确定后会自动导入/etc/pacman.d/mirrorlist配置文件中。1.2方法2:手动添加直接在et
- iOS App 上架流程工具链解析:开发者视角下的协作实践总结
2501_91591841
httpudphttpswebsocket网络安全网络协议tcp/ip
在我们最近完成的一个B2C健康管理类App项目中,有一个显著的特点:开发团队并不拥有统一的macOS环境。我们使用Flutter开发,一部分成员使用Windows,一部分使用Ubuntu,团队中仅有一台远程可用的Macmini作为打包主机。这次项目的iOS上架过程从准备证书、打包构建、上传提交,到信息维护与测试,每一个步骤都涉及多个工具协作。本文是从一个工程师的日常视角,拆解我们如何组合各类工具完
- Ubuntu22.04安装CH343驱动并创建udev规则
驱动说明Linux系统提供CH34*系列USBUART设备配合使用的默认CDC-ACM驱动程序。驱动程序文件名为CDC-ACM。CDC-ACM驱动程序控制特定设备的能力有限。此通用驱动程序不了解特定设备协议。因此,设备制造商可以创建能够访问设备特定功能集(例如硬件流控制或GPIO功能)的替代或自定义驱动程序。驱动文件下载:https://github.com/WCHSoftGroup/ch343s
- 使用随机森林实现目标检测
司南锤
python基础学习AI随机森林
核心实现思路滑动窗口策略:在图像上滑动固定大小的窗口,对每个窗口进行分类多维特征提取:结合统计特征、纹理特征、边缘特征、形状特征等随机森林分类:训练二分类器判断窗口是否包含目标后处理优化:使用非极大值抑制减少重复检测特征工程的重要性LBP纹理特征:捕捉局部纹理模式灰度共生矩阵:描述纹理的统计特性边缘密度:反映目标边界信息形状描述符:圆形度、面积比等几何特征实际应用建议数据收集:收集大量正负样本进行
- 【unitrix】 4.5 库文件介绍(readme.md)
liuyuan77
我的unitrix库rust
unitrix·单位算阵Unitrix:Normalizedphysicalunitmanagementand2Dgeometrycomputingthroughconstifiedmatrices.Deliverszero-costabstractionswithno_stdsupport.单位算阵:通过常量化矩阵实现物理量单位化与2D几何计算规范化。提供零成本抽象,支持no_std环境。Key
- 【QT】QPointF、QRectF、QPolygonF 介绍
我不是程序猿儿
QT之路qt开发语言
QPointF确实存在于Qt框架中,它是一个类,用于表示二维空间中的一个点,其中包含了浮点精度的x和y坐标。主要特点和用途高精度坐标:QPointF使用double类型来存储x和y坐标,这提供了比QPoint(后者存储整数坐标)更高的精度。这在需要精确定位或处理图形和界面元素时特别有用,例如在绘图、图像处理或任何需要几何计算的应用中。数学运算支持:QPointF提供了一系列便利的数学运算,如加法、
- Spring Boot集成RabbitMQ的使用
码海浮生
后端Java技术类java-rabbitmqspringbootrabbitmq
作者:知识浅谈,CSDN签约讲师,CSDN博客专家,华为云云享专家,阿里云专家博主擅长领域:全栈工程师、爬虫、ACM算法微信:zsqtcyw联系我领取学习资料SpringBoot集成RabbitMQ的使用引言引入依赖配置RabbitMQ交换机、队列和绑定声明交换机和队列发送消息接收消息消息类型消息确认发送确认消费确认消息序列化监控与管理注意事项总结引言RabbitMQ是一个开源的消息代理和队列服务
- ACM题目和培养训练!!!
wretchedme
算法codecacm
ACM大量习题题库ACM大量习题题库现在网上有许多题库,大多是可以在线评测,所以叫做OnlineJudge。除了USACO是为IOI准备外,其余几乎全部是大学的ACM竞赛题库。USACOhttp://ace.delos.com/usacogate美国著名在线题库,专门为信息学竞赛选手准备TJUhttp://acm.tongji.edu.cn/同济大学在线题库,唯一的中文题库,适合NOIP选手ZJU
- 几何算法与CAD技术:从基础到国产化突破
Lee同学
人工智能几何学算法c++数学建模
在工业设计、建筑建模和智能制造领域,计算机辅助设计(CAD)是连接创意与现实的桥梁。从一枚螺丝钉到一架飞机,CAD技术支撑着现代工业的每一个细节。然而,在光鲜的应用背后,几何算法才是CAD的“心脏”——它不仅定义了如何精确建模,更决定了设计效率与创新边界。本文将深入探讨CAD背后的几何算法核心,并揭秘国内技术如何突破“卡脖子”困境。一、几何建模:数字世界的“雕刻刀”1.边界表示法(B-Rep):高
- OCCT 入门(1)OCCT 简介
一个不务正业的程序猿
OCCT入门c++
文章目录一、OCCT简介1、什么是OCCT(OpenCASCADETechnology)?2、重要特点3、典型应用场景一、OCCT简介1、什么是OCCT(OpenCASCADETechnology)?OCCT是一个开源跨平台的三维几何建模内核,广泛应用于CAD/CAM/CAE、工业仿真、3D打印等领域(如FreeCAD、KiCAD等软件的核心引擎)。提供下面这些基本功能几何建模基础实体(立方体、圆
- 第五节 渲染机制与性能-回流与重绘优化
泽泽爱旅行
css前端javascripthtml
以下是关于回流(Reflow)与重绘(Repaint)优化的全面解析,结合核心原理、触发条件、性能影响及优化策略,帮助开发者深入理解并高效解决渲染性能问题。一、回流与重绘的核心概念回流(Reflow)定义:当元素的几何属性(如尺寸、位置、布局)发生变化时,浏览器需要重新计算渲染树(RenderTree)并更新页面布局,这一过程称为回流。触发条件:修改元素的width、height、margin、p
- PythonOCC中GeomAPI_PointsToBSplineSurface插值方法使用指南
尤颖贝Dora
PythonOCC中GeomAPI_PointsToBSplineSurface插值方法使用指南pythonocc-coretpaviot/pythonocc-core:是一个基于Python的OpenCASCADE(OCCT)几何内核库,提供了三维几何形状的创建、分析和渲染等功能。适合对3D建模、CAD、CAE以及Python有兴趣的开发者。项目地址:https://gitcode.com/gh
- 数学中的代数数论与代数几何
AI天才研究院
计算AI大模型应用入门实战与进阶大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA计算AI大模型应用
1.背景介绍在数学的众多分支中,代数数论和代数几何是两个极其重要的领域。代数数论,顾名思义,是研究数论问题的代数方法,主要研究整数、有理数、代数数等的性质。而代数几何则是研究零点集的代数方法,主要研究多项式方程和代数方程组的解的几何性质。这两个领域虽然看似独立,但实际上有着深厚的内在联系,它们的交叉研究已经产生了许多深远的理论和应用。2.核心概念与联系2.1代数数论代数数论的核心概念是代数数,即满
- 数智管理学(二十五)
虚谷23
数智管理学人工智能网络大数据企业数智化创业创新
三、动态资源优化的实现技术动态资源配置的实现离不开先进的技术支撑,以下几项技术是其关键要素:(一)数字孪生技术:虚拟映射真实资源1.虚拟模型构建与实时同步数字孪生技术通过传感器采集物理资源的各种数据,如设备的几何形状、物理特性、运行状态等,利用计算机图形学、建模技术和仿真技术,构建出与物理资源高度相似的虚拟模型。在智能工厂中,对于每一台生产设备,都可以建立对应的数字孪生模型,该模型不仅包括设备的外
- 清风数学建模个人笔记--模糊综合评价
fvdj0
数学建模笔记
目录一、量二、分类三、模糊函数的三种表示方法四、应用:模糊综合评价(评判)一、量①确定性:经典数学(几何、代数)②不确定性:随机性(概率论、随机过程)灰性(灰色系统)模糊性(模糊数学)二、分类:偏小型:年轻、小、冷中间型:中年、中、暖偏大型:年老、大、热三、模糊函数的三种表示方法(1)模糊统计法(设计调查问卷,不推荐,主观性最弱)(2)借助已有的尺度(需要已有的指标,并能收集到数据)论域模糊集隶属
- 腾讯混元3D实现内容生产的“平民化”
速易达网络
数字媒体专业课程3d
腾讯混元3D生成大模型是当前AI驱动3D内容生产的代表性技术,通过几何与纹理解耦、工业级开源、多模态输入等创新,将传统建模流程从“天级”压缩至“秒级”,彻底重构了游戏、影视、工业设计等领域的创作逻辑。以下从技术突破、应用落地及未来趋势三方面深度解析其核心价值:一、技术架构:几何与纹理解耦的工业级突破双模型协作生成框架几何大模型:专注物体结构与空间关系,生成拓扑合理的低多边形白模(面数可精准控制至数
- opencv学习——霍夫变换原理
zqnnn
opencv
最近的项目用到了霍夫变换,感觉自己只是会调用函数,并不清楚原理,所以写这篇记录一下霍夫变换中心思想是通过坐标变换来检测直线,后来经过改进,就可以检测椭圆等将特定图形上的点变换到一组参数空间上,根据参数空间点累计的结果找到一个极大值对应的解,那么这个解就对应着要寻找的几何形状的参数(比如说直线,那么就会得到直线的斜率k与截距b,圆就会得到圆心与半径等等)。原始空间到参数空间的变换假设有一条直线L,原
- Three.js 加载器简介
lpfasd123
Threejs学习笔记jsThreejs
1.Three.js加载器简介Three.js提供了多种加载器,用于加载不同格式的3D模型、纹理和其他资源。在本文中使用的是和:GLTFLoaderDRACOLoaderGLTFLoader:用于加载GLTF/GLB格式的3D模型。GLTF是一种轻量级的3D文件格式,支持几何体、材质、动画、场景等数据。返回的对象包含模型的场景(gltf.scene)、动画(gltf.animations)等信息。
- 数学:什么是余弦定理?
千码君2016
数学几何原本几何构造法向量点积法坐标系解析法反推角的大小合力大小文本向量相似性度量
余弦定理是欧氏平面几何学基本定理,它是勾股定理的推广,描述了任意三角形中三条边和一个角的余弦之间的关系。具体内容如下:历史渊源:对余弦定理的研究可追溯到公元前3世纪欧几里得的《几何原本》,但最初它只是以几何定理的身份出现。直到16世纪,法国数学家韦达首次写出了三角形式的余弦定理。17-18世纪,对余弦定理的应用不多,直到19-20世纪,余弦定理才得到广泛应用。应用场景:在解三角形问题中,若已知三边
- 数学:什么是平行四边形法则?
千码君2016
数学合向量共起点对角线向量加法余弦定理力的合成与分解向量代数
平行四边形法则是物理学和数学中用于合成向量的基本法则,主要用于描述如何将两个向量合成为一个合向量,其原理可通过几何图形直观表示。以下是关于该法则的详细介绍:一、定义与几何表达1.基本定义当两个向量以共起点的方式存在时(即它们的起点相同),可以以这两个向量为邻边作一个平行四边形,那么这两个向量所夹的对角线(从共同起点出发的对角线)就表示这两个向量的合向量。2.几何作图步骤设向量OA→\overrig
- 大模型强化微调GRPO——DeepSeekMath: Pushing the Limits of MathematicalReasoning in Open Language Models
樱花的浪漫
对抗生成网络与动作识别强化学习大模型与智能体因果推断语言模型人工智能自然语言处理深度学习机器学习
1.概述大型语言模型(LLM)革新了人工智能领域的数学推理方法,在定量推理基准测试(Hendrycks等,2021年)和几何推理基准测试(Trinh等,2024年)方面取得了重大进展。此外,这些模型在帮助人类解决复杂的数学问题方面也发挥了重要作用(Yao,2023年)。然而,像GPT-4(OpenAI,2023年)和Gemini-Ultra(Anil等,2023年)这样的尖端模型并未公开,目前可获
- js动画html标签(持续更新中)
843977358
htmljs动画mediaopacity
1.jQuery 效果 - animate() 方法 改变 "div" 元素的高度: $(".btn1").click(function(){ $("#box").animate({height:"300px
- springMVC学习笔记
caoyong
springMVC
1、搭建开发环境
a>、添加jar文件,在ioc所需jar包的基础上添加spring-web.jar,spring-webmvc.jar
b>、在web.xml中配置前端控制器
<servlet>
&nbs
- POI中设置Excel单元格格式
107x
poistyle列宽合并单元格自动换行
引用:http://apps.hi.baidu.com/share/detail/17249059
POI中可能会用到一些需要设置EXCEL单元格格式的操作小结:
先获取工作薄对象:
HSSFWorkbook wb = new HSSFWorkbook();
HSSFSheet sheet = wb.createSheet();
HSSFCellStyle setBorder = wb.
- jquery 获取A href 触发js方法的this参数 无效的情况
一炮送你回车库
jquery
html如下:
<td class=\"bord-r-n bord-l-n c-333\">
<a class=\"table-icon edit\" onclick=\"editTrValues(this);\">修改</a>
</td>"
j
- md5
3213213333332132
MD5
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
public class MDFive {
public static void main(String[] args) {
String md5Str = "cq
- 完全卸载干净Oracle11g
sophia天雪
orale数据库卸载干净清理注册表
完全卸载干净Oracle11g
A、存在OUI卸载工具的情况下:
第一步:停用所有Oracle相关的已启动的服务;
第二步:找到OUI卸载工具:在“开始”菜单中找到“oracle_OraDb11g_home”文件夹中
&
- apache 的access.log 日志文件太大如何解决
darkranger
apache
CustomLog logs/access.log common 此写法导致日志数据一致自增变大。
直接注释上面的语法
#CustomLog logs/access.log common
增加:
CustomLog "|bin/rotatelogs.exe -l logs/access-%Y-%m-d.log 
- Hadoop单机模式环境搭建关键步骤
aijuans
分布式
Hadoop环境需要sshd服务一直开启,故,在服务器上需要按照ssh服务,以Ubuntu Linux为例,按照ssh服务如下:
sudo apt-get install ssh
sudo apt-get install rsync
编辑HADOOP_HOME/conf/hadoop-env.sh文件,将JAVA_HOME设置为Java
- PL/SQL DEVELOPER 使用的一些技巧
atongyeye
javasql
1 记住密码
这是个有争议的功能,因为记住密码会给带来数据安全的问题。 但假如是开发用的库,密码甚至可以和用户名相同,每次输入密码实在没什么意义,可以考虑让PLSQL Developer记住密码。 位置:Tools菜单--Preferences--Oracle--Logon HIstory--Store with password
2 特殊Copy
在SQL Window
- PHP:在对象上动态添加一个新的方法
bardo
方法动态添加闭包
有关在一个对象上动态添加方法,如果你来自Ruby语言或您熟悉这门语言,你已经知道它是什么...... Ruby提供给你一种方式来获得一个instancied对象,并给这个对象添加一个额外的方法。
好!不说Ruby了,让我们来谈谈PHP
PHP未提供一个“标准的方式”做这样的事情,这也是没有核心的一部分...
但无论如何,它并没有说我们不能做这样
- ThreadLocal与线程安全
bijian1013
javajava多线程threadLocal
首先来看一下线程安全问题产生的两个前提条件:
1.数据共享,多个线程访问同样的数据。
2.共享数据是可变的,多个线程对访问的共享数据作出了修改。
实例:
定义一个共享数据:
public static int a = 0;
- Tomcat 架包冲突解决
征客丶
tomcatWeb
环境:
Tomcat 7.0.6
win7 x64
错误表象:【我的冲突的架包是:catalina.jar 与 tomcat-catalina-7.0.61.jar 冲突,不知道其他架包冲突时是不是也报这个错误】
严重: End event threw exception
java.lang.NoSuchMethodException: org.apache.catalina.dep
- 【Scala三】分析Spark源代码总结的Scala语法一
bit1129
scala
Scala语法 1. classOf运算符
Scala中的classOf[T]是一个class对象,等价于Java的T.class,比如classOf[TextInputFormat]等价于TextInputFormat.class
2. 方法默认值
defaultMinPartitions就是一个默认值,类似C++的方法默认值
- java 线程池管理机制
BlueSkator
java线程池管理机制
编辑
Add
Tools
jdk线程池
一、引言
第一:降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。第二:提高响应速度。当任务到达时,任务可以不需要等到线程创建就能立即执行。第三:提高线程的可管理性。线程是稀缺资源,如果无限制的创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一的分配,调优和监控。
- 关于hql中使用本地sql函数的问题(问-答)
BreakingBad
HQL存储函数
转自于:http://www.iteye.com/problems/23775
问:
我在开发过程中,使用hql进行查询(mysql5)使用到了mysql自带的函数find_in_set()这个函数作为匹配字符串的来讲效率非常好,但是我直接把它写在hql语句里面(from ForumMemberInfo fm,ForumArea fa where find_in_set(fm.userId,f
- 读《研磨设计模式》-代码笔记-迭代器模式-Iterator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.Arrays;
import java.util.List;
/**
* Iterator模式提供一种方法顺序访问一个聚合对象中各个元素,而又不暴露该对象内部表示
*
* 个人觉得,为了不暴露该
- 常用SQL
chenjunt3
oraclesqlC++cC#
--NC建库
CREATE TABLESPACE NNC_DATA01 DATAFILE 'E:\oracle\product\10.2.0\oradata\orcl\nnc_data01.dbf' SIZE 500M AUTOEXTEND ON NEXT 50M EXTENT MANAGEMENT LOCAL UNIFORM SIZE 256K ;
CREATE TABLESPA
- 数学是科学技术的语言
comsci
工作活动领域模型
从小学到大学都在学习数学,从小学开始了解数字的概念和背诵九九表到大学学习复变函数和离散数学,看起来好像掌握了这些数学知识,但是在工作中却很少真正用到这些知识,为什么?
最近在研究一种开源软件-CARROT2的源代码的时候,又一次感觉到数学在计算机技术中的不可动摇的基础作用,CARROT2是一种用于自动语言分类(聚类)的工具性软件,用JAVA语言编写,它
- Linux系统手动安装rzsz 软件包
daizj
linuxszrz
1、下载软件 rzsz-3.34.tar.gz。登录linux,用命令
wget http://freeware.sgi.com/source/rzsz/rzsz-3.48.tar.gz下载。
2、解压 tar zxvf rzsz-3.34.tar.gz
3、安装 cd rzsz-3.34 ; make posix 。注意:这个软件安装与常规的GNU软件不
- 读源码之:ArrayBlockingQueue
dieslrae
java
ArrayBlockingQueue是concurrent包提供的一个线程安全的队列,由一个数组来保存队列元素.通过
takeIndex和
putIndex来分别记录出队列和入队列的下标,以保证在出队列时
不进行元素移动.
//在出队列或者入队列的时候对takeIndex或者putIndex进行累加,如果已经到了数组末尾就又从0开始,保证数
- C语言学习九枚举的定义和应用
dcj3sjt126com
c
枚举的定义
# include <stdio.h>
enum WeekDay
{
MonDay, TuesDay, WednesDay, ThursDay, FriDay, SaturDay, SunDay
};
int main(void)
{
//int day; //day定义成int类型不合适
enum WeekDay day = Wedne
- Vagrant 三种网络配置详解
dcj3sjt126com
vagrant
Forwarded port
Private network
Public network
Vagrant 中一共有三种网络配置,下面我们将会详解三种网络配置各自优缺点。
端口映射(Forwarded port),顾名思义是指把宿主计算机的端口映射到虚拟机的某一个端口上,访问宿主计算机端口时,请求实际是被转发到虚拟机上指定端口的。Vagrantfile中设定语法为:
c
- 16.性能优化-完结
frank1234
性能优化
性能调优是一个宏大的工程,需要从宏观架构(比如拆分,冗余,读写分离,集群,缓存等), 软件设计(比如多线程并行化,选择合适的数据结构), 数据库设计层面(合理的表设计,汇总表,索引,分区,拆分,冗余等) 以及微观(软件的配置,SQL语句的编写,操作系统配置等)根据软件的应用场景做综合的考虑和权衡,并经验实际测试验证才能达到最优。
性能水很深, 笔者经验尚浅 ,赶脚也就了解了点皮毛而已,我觉得
- Word Search
hcx2013
search
Given a 2D board and a word, find if the word exists in the grid.
The word can be constructed from letters of sequentially adjacent cell, where "adjacent" cells are those horizontally or ve
- Spring4新特性——Web开发的增强
jinnianshilongnian
springspring mvcspring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装配置tengine并设置开机启动
liuxingguome
centos
yum install gcc-c++
yum install pcre pcre-devel
yum install zlib zlib-devel
yum install openssl openssl-devel
Ubuntu上可以这样安装
sudo aptitude install libdmalloc-dev libcurl4-opens
- 第14章 工具函数(上)
onestopweb
函数
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Xelsius 2008 and SAP BW at a glance
blueoxygen
BOXelsius
Xelsius提供了丰富多样的数据连接方式,其中为SAP BW专属提供的是BICS。那么Xelsius的各种连接的优缺点比较以及Xelsius是如何直接连接到BEx Query的呢? 以下Wiki文章应该提供了全面的概览。
http://wiki.sdn.sap.com/wiki/display/BOBJ/Xcelsius+2008+and+SAP+NetWeaver+BW+Co
- oracle表空间相关
tongsh6
oracle
在oracle数据库中,一个用户对应一个表空间,当表空间不足时,可以采用增加表空间的数据文件容量,也可以增加数据文件,方法有如下几种:
1.给表空间增加数据文件
ALTER TABLESPACE "表空间的名字" ADD DATAFILE
'表空间的数据文件路径' SIZE 50M;
&nb
- .Net framework4.0安装失败
yangjuanjava
.netwindows
上午的.net framework 4.0,各种失败,查了好多答案,各种不靠谱,最后终于找到答案了
和Windows Update有关系,给目录名重命名一下再次安装,即安装成功了!
下载地址:http://www.microsoft.com/en-us/download/details.aspx?id=17113
方法:
1.运行cmd,输入net stop WuAuServ
2.点击开