“科大讯飞杯”第十七届同济大学程序设计预选赛暨高校网络友谊赛 J斐波那契和 BM外挂

分析可知这符合线性递推式。

所以BM。。

暴力的算出前面1000项,然后直接让板子

推出后面的式子

如何分析出。。下篇BLOG写矩阵快速幂的写法

#include
using namespace std;
#define rep(i,a,n) for (int i=a;i=a;i--)
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
typedef vector VI;
typedef long long ll;
typedef pair PII;
const ll mod=998244353;
ll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}
// head

ll n;
namespace linear_seq {
    const int N=10010;
    ll res[N],base[N],_c[N],_md[N];

    vector Md;
    void mul(ll *a,ll *b,int k) {
        rep(i,0,k+k) _c[i]=0;
        rep(i,0,k) if (a[i]) rep(j,0,k) _c[i+j]=(_c[i+j]+a[i]*b[j])%mod;
        for (int i=k+k-1;i>=k;i--) if (_c[i])
            rep(j,0,SZ(Md)) _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod;
        rep(i,0,k) a[i]=_c[i];
    }
    int solve(ll n,VI a,VI b) { // a 系数 b 初值 b[n+1]=a[0]*b[n]+...
        ll ans=0,pnt=0;
        int k=SZ(a);
        assert(SZ(a)==SZ(b));
        rep(i,0,k) _md[k-1-i]=-a[i];_md[k]=1;
        Md.clear();
        rep(i,0,k) if (_md[i]!=0) Md.push_back(i);
        rep(i,0,k) res[i]=base[i]=0;
        res[0]=1;
        while ((1ll<=0;p--) {
            mul(res,res,k);
            if ((n>>p)&1) {
                for (int i=k-1;i>=0;i--) res[i+1]=res[i];res[0]=0;
                rep(j,0,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod;
            }
        }
        rep(i,0,k) ans=(ans+res[i]*b[i])%mod;
        if (ans<0) ans+=mod;
        return ans;
    }
    VI BM(VI s) {
        VI C(1,1),B(1,1);
        int L=0,m=1,b=1;
        rep(n,0,SZ(s)) {
            ll d=0;
            rep(i,0,L+1) d=(d+(ll)C[i]*s[n-i])%mod;
            if (d==0) ++m;
            else if (2*L<=n) {
                VI T=C;
                ll c=mod-d*powmod(b,mod-2)%mod;
                while (SZ(C)>n>>k;
    fib[1]=fib[2]=1;
	vectorv;
    for(int i=1;i<=1000;i++)
    {
    	if(i>2)fib[i]=(fib[i-1]+fib[i-2])%mod;
    	ll tp=0;
    	for(int j=1;j<=i;j++)
    	{
    		tp=(tp+qpow(j,k)*fib[j]%mod)%mod;
		}
		v.pb(tp);
	}
    printf("%lld\n",1LL * linear_seq::gao(v,n-1) % mod);

}

 

你可能感兴趣的:(数学——BM)