链接:http://blog.csdn.net/chenbang110/article/details/7742535
给定两个点:
typedef struct {
double x, y;
} Point;
Point A1,A2,B1,B2;
首先引入两个实验:
a.快速排斥实验
设以线段A1A2和线段B1B2为对角线的矩形为M,N;
若M,N 不相交,则两个线段显然不相交;
所以:满足第一个条件时:两个线段可能相交。
b.跨立实验
如果两线段相交,则两线段必然相互跨立对方.若A1A2跨立B1B2,则矢量( A1 - B1 ) 和(A2-B1)位于矢量(B2-B1)的两侧,
即(A1-B1) × (B2-B1) * (A2-B1) × (B2-B1)<0。
上式可改写成(A1-B1) × (B2-B1) * (B2-B1) × (A2-A1)>0。
应该判断两次,即两条线段都要为直线,判断另一直线的两端点是否在它两边,若是则两线段相交。
若积极满跨立实验是不行的,如下面的情况:
即两条线段在同一条直线上。所以我们要同时满足两次跨立和快速排斥实验。
总体分析:
当(A1-B1) × (B2-B1)=0时,说明(A1-B1)和(B2-B1)共线,但是因为已经通过快速排斥试验,所以 A1一定在线段 B1B2上;同理,(B2-B1)×(A2-B1)=0 说明A2一定在线段B1B2上。所以判断A1A2跨立B1B2的依据是:(A1-B1) × (B2-B1) * (B2-B1) × (A2-B1) >= 0。
同理判断B1B2跨立A1A2的依据是:(B1-A1) × (A2-A1) * (A2-A1) × (B2-A1) >= 0。
如图:
应用:
1. 判断两个线段相交
2. 判断线段与直线相交
3. 判断点在矩形内
代码:
struct node
{
double x,y;
};
node P[35][105];
double Cross_Prouct(node A,node B,node C) // 计算BA叉乘CA;
{
return (B.x-A.x)*(C.y-A.y)-(B.y-A.y)*(C.x-A.x);
}
bool Intersect(node A,node B,node C,node D) // 通过叉乘判断线段是否相交;
{
if(min(A.x,B.x)<=max(C.x,D.x)&& // 快速排斥实验;
min(C.x,D.x)<=max(A.x,B.x)&&
min(A.y,B.y)<=max(C.y,D.y)&&
min(C.y,D.y)<=max(A.y,B.y)&&
Cross_Prouct(A,B,C)*Cross_Prouct(A,B,D)<0&& // 跨立实验;
Cross_Prouct(C,D,A)*Cross_Prouct(C,D,B)<0) // 叉乘异号表示在两侧;
return true;
else return false;
}
#include
#include
#include
#include
#include
#include
#include
using namespace std;
typedef long long ll;
struct Point{
double x,y;
};
double mult(Point a, Point b, Point c)
{
return (a.x-c.x)*(b.y-c.y)-(b.x-c.x)*(a.y-c.y);
}
//aa, bb为一条线段两端点 cc, dd为另一条线段的两端点 相交返回true, 不相交返回false
bool intersect(Point aa, Point bb, Point cc, Point dd)
{
if ( max(aa.x, bb.x)>a.x>>a.y>>b.x>>b.y>>c.x>>c.y>>d.x>>d.y;
if(intersect(a,b,c,d))
printf("Interseetion\n");
else
printf("Not Interseetion\n");
}
}