UPC --- 2018年第三阶段个人训练赛第六场 --- J题 Derangement (6602)

问题 J: Derangement

时间限制: 1 Sec  内存限制: 128 MB
提交: 426  解决: 219
[提交] [状态] [讨论版] [命题人:admin]

题目描述

You are given a permutation p1,p2,…,pN consisting of 1,2,..,N. You can perform the following operation any number of times (possibly zero):
Operation: Swap two adjacent elements in the permutation.
You want to have pi≠i for all 1≤i≤N. Find the minimum required number of operations to achieve this.

Constraints
2≤N≤105
p1,p2,..,pN is a permutation of 1,2,..,N.

 

输入

The input is given from Standard Input in the following format:
N
p1 p2 .. pN

 

输出

Print the minimum required number of operations

 

样例输入

5
1 4 3 5 2

 

样例输出

2

 

提示

Swap 1 and 4, then swap 1 and 3. p is now 4,3,1,5,2 and satisfies the condition. This is the minimum possible number, so the answer is 2.




【题目大意】: 

给你一个序列p,通过交换相邻的两个数字,使得序列里的数字与位置的编号不同,即 p[i] != i (下标从1开始),求最小的交换次数。

思路: 

因为只能相邻的数字两两交换,要使得交换次数最小,数字与后一个交换即可。

用一个数组b来存需要交换的数字。

  1. 如果两个相邻的数字都需要交换,即abs(b[i]-b[i+1])=1,则交换一次就可以使两个数字满足要求,同时 i++,跳过下一个要交换的数b[i+1],因为已经满足要求了;
  2. 如果两个相邻数字仅一个要交换,则直接 交换次数+1 就行了;
  3. 如果b数组长度与n相等,即 整个序列都不满足条件,通过举例可以得到规律,

交换的次数是 :

  • 当 n为偶数, ans = n/2;
  • 当 n为奇数,ans = n/2+1;

 


代码:

#include
using namespace std;
const int N = 1e5+10;
int a[N];
int b[N];
int main()
{
    int n;
    while(cin >> n)
    {
        int ans = 0;
        for(int i=1; i<=n; i++)
            cin >> a[i];
        int cnt = 0;
        for(int i=1; i<=n; i++)
        {
            if(a[i] == i)
                b[cnt++] = i;
        }
        if(cnt == n)
        {
            if(n%2 == 0)
                cout << n/2 << endl;
            else
                cout << n/2+1 << endl;
            continue;
        }
        else
        {
            for(int i=0; i

欢迎指正与交流

你可能感兴趣的:(2018小白进阶之路)