【蓝桥杯 垒骰子】java实现两种解法 快速矩阵幂&滚动数组

垒骰子

赌圣atm晚年迷恋上了垒骰子,就是把骰子一个垒在另一个上边,不能歪歪扭扭,要垒成方柱体。
经过长期观察,atm 发现了稳定骰子的奥秘:有些数字的面贴着会互相排斥!
我们先来规范一下骰子:1 的对面是 4,2 的对面是 5,3 的对面是 6。
假设有 m 组互斥现象,每组中的那两个数字的面紧贴在一起,骰子就不能稳定的垒起来。 atm想计算一下有多少种不同的可能的垒骰子方式。
两种垒骰子方式相同,当且仅当这两种方式中对应高度的骰子的对应数字的朝向都相同。
由于方案数可能过多,请输出模 10^9 + 7 的结果。

不要小看了 atm 的骰子数量哦~

「输入格式」
第一行两个整数 n m
n表示骰子数目
接下来 m 行,每行两个整数 a b ,表示 a 和 b 不能紧贴在一起。

「输出格式」
一行一个数,表示答案模 10^9 + 7 的结果。

「样例输入」
2 1
1 2

「样例输出」
544

「数据范围」
对于 30% 的数据:n <= 5
对于 60% 的数据:n <= 100
对于 100% 的数据:0 < n <= 10^9, m <= 36

资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗  < 2000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。

所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。
注意:不要使用package语句。不要使用jdk1.7及以上版本的特性。
注意:主类的名字必须是:Main,否则按无效代码处理。


解法一:滚动数组

思路:见代码注释

public class 垒骰子_9_滚动数组 {
	private static int a[][] = new int[10][10];//存放6个面的排斥关系,只用到数组下标1~7
	
	private static int b[] = new int [7];//对立面
	private static long count ;
	private static long C = 1000000007;
	
	private static boolean check(int current,int last)
	{
		if(a[current][last]==1)//说明两个骰子互相排斥
		{
			return true;
		}
		return false;
	}
	
	
	
	public static void main(String[] args) {
		// TODO Auto-generated method stub
		b[1]=4;b[4]=1;
		b[2]=5;b[5]=2;
		b[3]=6;b[6]=3;
		int n,m,a1,a2;
		Scanner in = new Scanner(System.in);
		n = in.nextInt();
		int num = 4;
		m = in.nextInt();
		for(int i = 0;i>= 1;
		}
		return ans;
	}
}

解法二:快速矩阵幂

思路:传送门,这篇博主的思路很好,只要把它的递推矩阵理解到位就没问题,但是没有实现4^n的整数快速幂实现

此篇java代码实现了快速矩阵幂来计算前n-1个6*6阶矩阵的乘积,最后的sum相当于传送门里博主的B矩阵求和,也就是最终没有乘4^n的答案,这样就得到了第n个骰子各面朝上的所有情况,当然要记得最后乘个4^n,在这里顺便也给出了整数快速幂的实现。

public class 垒骰子_9_快速矩阵幂 {
	private static int mod = 1000000007;

	static class Matrix
	{
		int a[][]= new int [6][6];
		
		public Matrix(){}
		
		public Matrix(int x)//初始化对角线元素,以构造单位矩阵
		{
			for(int i = 0;i<6;i++)
			{
				for(int j=0;j<6;j++)
				{
					a[i][j]= 0;
				}
			}
			for(int i = 0;i<6;i++)
			{
				a[i][i] = x;
			}
		}
	}
	
	public static int q_pow(int m,int n,int mod)//计算m^n
	{
		int base = m;
		int ans = 1;
		while(n>0)
		{
			if((n&1)==1)
				ans = (ans*base)%mod;
			base = (base*base)%mod;
			n>>=1;
		}
		return ans;
	}
	
	public static Matrix mul(Matrix m1,Matrix m2)
	{
		Matrix m = new Matrix();
		for(int i = 0;i<6;i++)
		{
			for(int j = 0;j<6;j++)
			{
				for(int k = 0;k<6;k++)
				{
					m.a[i][j] += (m1.a[i][k]*m2.a[k][j])%mod;
				}
			}
		}
		return m;
	}
	public static Matrix q_pow(Matrix m,int n)
	{
		Matrix ans = new Matrix(1);//这里要变成单位矩阵
		Matrix base = m;
		while(n>0)
		{
			if((n&1)==1)
				ans = mul(ans,base);
			base = mul(base,base);
			n>>=1;
		}
		return ans;
	}
	
	public static void main(String[] args) {
		// TODO Auto-generated method stub
		int n,m,a1,a2;
		int sum = 0;
		Scanner in = new Scanner(System.in);
		n = in.nextInt();
		int num;
		m = in.nextInt();
		Matrix matrix = new Matrix();
		for(int i = 0;i<6;i++)
		{
			for(int j=0;j<6;j++)
			{
				matrix.a[i][j]= 1;
			}
		}
		for(int i = 0;i

 

 

你可能感兴趣的:(算法,ACM)