- Python的情感词典情感分析和情绪计算
yava_free
python大数据人工智能
一.大连理工中文情感词典情感分析(SentimentAnalysis)和情绪分类(EmotionClassification)都是非常重要的文本挖掘手段。情感分析的基本流程如下图所示,通常包括:自定义爬虫抓取文本信息;使用Jieba工具进行中文分词、词性标注;定义情感词典提取每行文本的情感词;通过情感词构建情感矩阵,并计算情感分数;结果评估,包括将情感分数置于0.5到-0.5之间,并可视化显示。目
- 三国演义python分析系统_Python之三国演义(上)
weixin_40002692
三国演义python分析系统
一、设计实现详细说明1.1任务详细描述以中国四大名著之一——《三国演义》为蓝本,结合python数据分析知识进行本次的文本分析。《三国演义》全书共120回。本次的分析主要基于统计分析、文本挖掘等知识。1.2设计思路详细描述数据准备、数据预处理、分词等全书各个章节的字数、词数、段落等相关方面的关系整体词频和词云的展示全书各个章节进行聚类分析并可视化,主要进行了根据IF-IDF的系统聚类和根据词频的L
- **解读心理健康,引领未来智能——MentaLLaMA:大型语言模型的革命性应用**
滑辰煦Marc
解读心理健康,引领未来智能——MentaLLaMA:大型语言模型的革命性应用在如今的数字时代,社交媒体成为人们分享生活、表达情绪的重要平台。然而,从中洞察公众的心理健康状况并提供及时帮助却是一大挑战。为此,由国际知名科研机构如英国曼彻斯特大学的国家文本挖掘中心(NaCTeM)和人工智能研究中心(AIST)等合作研发的开源项目——MentaLLaMA应运而生。这个项目不仅提供了一种创新的方法来分析社
- 情感分析相关汇总
宁缺100
自然语言处理自然语言处理情感分析
文章目录情感分析语音情感识别句子or文档级别情感分析情感词汇字典大连理工大学中文情感词汇本体中文金融情感词典金融社交媒体数据应用的市场情绪词典中文情感分析常用词典台湾大学NTUSD简体中文情感词典BosonNLPABSA细腻度情感分析相关比赛【千言情感分析】SKEP句子级情感分析相关博客或者论文中文情感分析(SentimentAnalysis)的难点在哪?现在做得比较好的有哪几家?文本挖掘在商品评
- 计算机毕业设计之基于Python的旅游景点评论内容分析与研究
微信bishe58
课程设计springbootpython信息可视化
旅游景点评论内容分析与研究是一个涉及文本挖掘、情感分析和数据可视化等多领域技术的复杂过程。本研究以Python编程语言为基础,首先收集了来自不同旅游平台的用户评论数据。通过运用自然语言处理(NLP)技术,清洗并预处理了这些数据,以便于后续分析。随后,采用情感分析方法来识别和量化评论中的主观态度和情绪倾向,从而判断游客的整体满意度。此外,还运用词云、主题建模等手段来探索游客评论中的关键词汇和讨论主题
- 【Python机器学习】NLP的部分实际应用
zhangbin_237
Python机器学习机器学习自然语言处理人工智能python大数据
自然语言处理在现实中非常多的应用,下表是其中的一些例子:应用示例1示例2示例3搜索web文档自动补全编辑拼写语法风格对话聊天机器人助手行程安排写作索引用语索引目录电子邮件垃圾邮件过滤分类优先级排序文本挖掘摘要知识提取医学诊断法律法律断案先例搜索传票分类新闻事件检索真相核查标题排字归属剽窃检测文字取证风格指导情感分析团队士气监控产品评论分类客户关怀行为预测金融选举预测营销创作电影脚本诗歌歌词如果在索
- Python中的自然语言处理和文本挖掘
api77
电商apiapipython自然语言处理easyui开发语言网络前端java
在Python中,自然语言处理(NLP)和文本挖掘通常涉及对文本数据进行清洗、转换、分析和提取有用信息的过程。Python有许多库和工具可以帮助我们完成这些任务,其中最常用的包括nltk(自然语言处理工具包)、spaCy、gensim、textblob和scikit-learn等。以下是一个简单的例子,展示了如何使用Python和nltk库进行基本的自然语言处理和文本挖掘。安装必要的库首先,确保你
- 【医学大模型 知识增强】SMedBERT:结构化语义知识 + 医学大模型 = 显著提升大模型医学文本挖掘性能
Debroon
医学大模型:个性化精准安全可控人工智能
SMedBERT:结构化语义知识+医学大模型=显著提升医学文本挖掘任务性能名词解释结构化语义知识预训练语言模型医学文本挖掘任务提出背景具体步骤提及-邻居混合注意力机制实体嵌入增强实体描述增强三元组句子增强提及-邻居上下文建模域内词汇权重学习领域自监督任务预训练SMedBERT图示左半部分:SMedBERT架构右半部分:预训练任务方法部分数学部分效果论文:https://arxiv.org/pdf/
- 人工智能
阳光照我心房
今天看了下人工智能的资料,了解了下,人工智能的应用方向,实现技术。了解到人工智能、机器学习、深度学习的关系,神经网络是深度学习的实现的模型。语音、图像、机器翻译、机器人、文本挖掘和分类。感觉机器学习自己挺感兴趣啊
- 探索NLP中的N-grams:理解,应用与优化
冷冻工厂
程序人生
简介n-gram[1]是文本文档中n个连续项目的集合,其中可能包括单词、数字、符号和标点符号。N-gram模型在许多与单词序列相关的文本分析应用中非常有用,例如情感分析、文本分类和文本生成。N-gram建模是用于将文本从非结构化格式转换为结构化格式的众多技术之一。n-gram的替代方法是词嵌入技术,例如word2vec。N-grams广泛用于文本挖掘和自然语言处理任务。示例通过计算每个唯一的n元语
- 机器学习概述及流程
机智的冷露
机器学习人工智能机器学习python
概述一、目标1、掌握机器学习基础环境安装2、掌握常用的科学计算库对数据进行展示、分析二、人工智能三要素1、数据2、算法2、算力:CPU适合I/O密集型程序,GPU适合计算密集型和易于并行的程序。三、人工智能主要分支1、计算机视觉(CV)2、自然语言处理(NLP):文本挖掘/分类、机器翻译、语音识别3、机器人四、机器学习工作流程简介从数据中自动分析获得模型,再利用模型对未知数据进行预测。1、获取数据
- 文本挖掘HW3
在做算法的巨巨
importosimportos.pathimportcodecsimportpandasaspdimportnumpyasnpfilePaths=[]fileContents=[]a=os.walk("C:/Users/dell/Desktop/datamining/2.1+语料库/2.1/SogouC.mini/Sample")forroot,dirs,filesina:fornameinfi
- 数据科学 | Python酷炫词云图原来可以这么玩
欣一2002
可视化python数据分析数据可视化csv
↑↑↑↑↑点击上方蓝色字关注我们!『运筹OR帷幄』转载作者:费弗里编者按词云图是文本挖掘中用来表征词频的数据可视化图像,通过它可以很直观地展现文本数据中的高频词。词云图过滤掉大量的低频低质的文本信息,使得浏览者只要一眼扫过文本就可领略文本的主旨。很多文章都会用词云图来直观的表示数据分析结果,词云图是如果制作的就在这篇文章中寻找答案吧。本文对应脚本及数据在后台领取,回复【词云图】1简介词云图是文本挖
- 新媒体与传媒行业数据分析实践:从网络爬虫到文本挖掘的综合应用,以“中国文化“为主题
八块腹肌的小胖
数据分析python
大家好,我是八块腹肌的小胖,下面将围绕微博“中国文化”以数据分析、数据处理、建模及可视化等操作目录1、数据获取2、数据处理3、词频统计及词云展示4、文本聚类分析5、文本情感倾向性分析6、情感倾向演化分析7、总结1、数据获取本任务以新浪微博为目标网站,爬取“中国文化”为主题的微博数据进行数据预处理、数据可视化等操作。目标网站如图1所示:图1微博网站及分析通过分析微博网站,使用爬虫获取代码,爬虫核心伪
- 基于TF-IDF的关键词提取的实现
Algorithm_Engineer_
自然语言处理tf-idfpython人工智能
一.TF-IDF的简单介绍TF-IDF(TermFrequency-InverseDocumentFrequency)是一种用于信息检索与文本挖掘的常用加权技术,用于评估一个词在文档集合中的重要性。它结合了词频和逆文档频率的概念。以下是TF-IDF的简单介绍:词频(TF-TermFrequency):表示一个词在文档中出现的频率。通常,词频越高,说明该词在文档中越重要。公式:TF(t,d)=词t在
- 看书标记【R语言数据分析项目精解:理论、方法、实战 9】
小胡涂记
R语言资料实现r语言数据分析开发语言
看书标记——R语言Chapter9文本挖掘——点评数据展示策略9.1项目背景、目标和方案9.1.1项目背景9.1.2项目目标9.1.3项目方案1.建立评论文本质量量化指标2.建立用户相似度模型3.对用户评论进行情感性分析9.2项目技术理论简介9.2.1评论文本质量量化指标模型1.主题覆盖量2.评论文本分词数量3.评论点赞数4.评论中的照片数5.评论分值偏移9.2.2用户相似度模型1.pearson
- NLP深入学习(三):TF-IDF 详解以及文本分类/聚类用法
Smaller、FL
NLP自然语言处理学习tf-idfnlp人工智能
文章目录0.引言1.什么是TF-IDF2.TF-IDF作用3.Python使用3.1计算tf-idf的值3.2文本分类3.3文本聚类4.参考0.引言前情提要:《NLP深入学习(一):jieba工具包介绍》《NLP深入学习(二):nltk工具包介绍》1.什么是TF-IDFTF-IDF(TermFrequency-InverseDocumentFrequency)是一种用于信息检索和文本挖掘的常用加权
- [文本挖掘和知识发现] 01.红楼梦主题演化分析——文献可视化分析软件CiteSpace入门
Eastmount
文本挖掘和知识发现Python学习系列CiteSpace数据分析文本挖掘主题演化图书情报
八月太忙,还是写一篇吧!本文是作者2023年8月底新开的专栏——《文本挖掘和知识发现》,主要结合Python、大数据分析和人工智能分享文本挖掘、知识图谱、知识发现、图书情报等内容。此外,这些内容也是作者《文本挖掘和知识发现(Python版)》书籍的部分介绍,本书预计2024年上市,采用通俗易懂和图文并茂的形式藐视,会更加系统地介绍文本挖掘和知识发现,共计20章节内容,涵盖上百个案例。您的关注、点赞
- BM25(Best Matching 25)算法基本思想
NLP工程化
Python教程python信息检索BM25
BM25(BestMatching25)是一种用于信息检索(InformationRetrieval)和文本挖掘的算法,它被广泛应用于搜索引擎和相关领域。BM25基于TF-IDF(TermFrequency-InverseDocumentFrequency)的思想,但对其进行了改进以考虑文档的长度等因素。一.基本思想 以下是BM25算法的基本思想:TF-IDF的改进:BM25通过对文档中的每
- 文本挖掘与信息抽取:从非结构化数据中提取知识的关键技术
人工智能的光信号
人工智能
人工智能的学习之路非常漫长,不少人因为学习路线不对或者学习内容不够专业而举步难行。不过别担心,我为大家整理了一份600多G的学习资源,基本上涵盖了人工智能学习的所有内容。点击下方链接,0元进群领取学习资源,让你的学习之路更加顺畅!记得点赞、关注、收藏、转发哦!进群扫码领资料文本挖掘和信息抽取是自然语言处理领域中的重要技术,它们可以帮助我们从大量的文本数据中提取出有用的信息和知识。本文将对文本挖掘和
- Python文本挖掘学习笔记- sentiment analysis情感分析
认真学习的兔子
量化用户的内容、想法、信念和意见被称为情感分析。用户的在线帖子、博客、推特、产品的反馈有助于商业人士了解目标受众,并在产品和服务方面进行创新。情绪分析有助于以更好、更准确的方式了解人们。它不仅限于市场营销,而且还可以用于政治、研究和安全领域。人类的交流不仅仅局限于语言,它比语言更重要。情感是文字、语气和写作风格的组合。作为一个数据分析师,更重要的是要了解我们的情感,它到底意味着什么?让我们继续学习
- 解密TF-IDF:打开文本分析的黑匣子
散一世繁华,颠半世琉璃
人工智能python人工智能
1.TF-IDF概述TF-IDF,全称是“TermFrequency-InverseDocumentFrequency”,中文意为“词频-逆文档频率”。这是一种在信息检索和文本挖掘中常用的加权技术。TF-IDF用于评估一个词语对于一个在语料库中的文件集或一个语料库中的其中一份文件的重要程度。它是一种统计方法,用以评估词语对于一个文件集或一个查询库中的其中之一的重要性。其基本思想是:如果某个词语在一
- 【论文笔记】ZOO: Zeroth Order Optimization
xhyu61
学习笔记论文笔记机器学习论文阅读
论文(标题写不下了):《ZOO:ZerothOrderOptimizationBasedBlack-boxAttackstoDeepNeuralNetworkswithoutTrainingSubstituteModels》Abstract深度神经网络(DNN)是当今时代最突出的技术之一,在许多机器学习任务中实现了最先进的性能,包括但不限于图像分类、文本挖掘、语音处理。但人们越来越关注对抗性示例的
- 基于关联规则与可平面图的商品摆放规划-----实验报告
FakeOccupational
数据分析
基于关联规则与可平面图的商品摆放规划摘要:本文先对northwind数据库介绍与数据描述与简单分析(数据异常值处理,订单地址的文本挖掘),然后对购买的商品使用关联规则算法,进行关联分析与商品的购买情况分析,由关联规则的发现结果,使用图论方法分析商品的摆放图。关键词:Northwind数据库;关联规则;可平面图;1.Northwind数据库数据介绍图1Northwind数据库的安装文件执行文件中的S
- 深入理解TF-IDF、BM25算法与BM25变种:揭秘信息检索的核心原理与应用
汀、人工智能
tf-idf人工智能BM25算法NLP自然语言处理检索系统语义搜索
深入理解TF-IDF、BM25算法与BM25变种:揭秘信息检索的核心原理与应用1.文本特征表示方法:TF-IDF在信息检索,文本挖掘和自然语言处理领域,IF-IDF这个名字,从它在20世纪70年代初被发明,已名震江湖近半个世纪而不曾衰歇.它表示的简单性,应用的有效性,使得它成为不同文本处理任务文本特征权重表示的首选方案.如果要评选一个NLP领域最难以被忘记的公式,我想,TF-IDF应该是无可争议的
- 文本挖掘之主题分析的详细介绍
亦旧sea
机器学习人工智能算法
文本挖掘的主题分析是什么文本挖掘的主题分析是指通过计算机自动处理文本数据,识别出文本中的主题和话题。主题指的是文本中的核心概念或议题,而话题则是具体的讨论点或事件。主题分析可以帮助人们快速了解大量文本数据中的内容和趋势,从而支持信息检索、舆情分析、情感分析、知识发现等应用。主题分析的主要方法包括文本聚类、主题模型、关键词提取等。文本挖掘的主题分析的特点是什么,优缺点是什么文本挖掘的主题分析是通过对
- 文本分析之词云图的绘制
亦旧sea
pythonnumpy数据分析
文本分析的词云图是一种可视化方式,用于展示文本中出现频率较高的词汇。词云图通常以词汇的出现频率为基础,将频率较高的词汇在图中显示为较大的字体,频率较低的词汇则以较小的字体显示。通过词云图,可以直观地了解文本的关键词和主题,帮助人们快速抓取文本的主要信息。文本分析的词云图可以应用于多个领域,包括舆情分析、市场研究、文本挖掘等。词云是一种对文本数据进行可视化展示的方式,通过将文本中的关键词以不同字体大
- 文本挖掘之情感分析详细介绍
亦旧sea
人工智能
文本挖掘的情感分析是什么文本挖掘的情感分析是指通过计算机技术和自然语言处理技术,对文本中的情绪、情感进行分析和识别的过程。它的目标是从文本中抽取出作者的情感倾向,通常可以分为正面情感、负面情感和中性情感三类。情感分析可以应用于社交媒体分析、舆情监测、产品评论分析等领域,可以帮助企业了解用户对产品或服务的态度和情感倾向,做出相应的决策和调整。文本挖掘的情感分析的特点是什么,优缺点是什么文本挖掘的情感
- 利用Minitab中的全新Python 集成开启探索之旅
MinitabUG
数据挖掘数据分析人工智能python
现如今,内容无处不在,随时可供访问!尼尔森(Nielsen)的一项研究发现,美国成人每天用于阅读、聆听、观看媒体以及与媒体互动的时间超过11小时。当下大家宅在家中,想必这个数值只会更高。可用内容层出不穷,您或许会想知道:是否存在一种定量方式,让我们能够深入了解可用文本?文本挖掘也称为文本数据挖掘,指的是从文本撷取高质量信息的过程,其终极目标是从文本变量中提取度量数值,供定量建模之用。文本挖掘为何重
- Python中的自然语言处理和文本挖掘
数据小爬虫
电商apiapipython自然语言处理easyuijava开发语言笔记人工智能
在Python中,自然语言处理(NLP)和文本挖掘是两个密切相关的领域,它们都涉及到对人类语言的处理和分析。下面我们将分别介绍这两个领域,以及如何使用Python进行自然语言处理和文本挖掘。一、自然语言处理(NLP)自然语言处理是一种让计算机理解和生成人类语言的技术。在Python中,有许多库可用于进行自然语言处理,其中最常用的是NLTK(NaturalLanguageToolkit)和spaCy
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比