- HuggingFace下载模型并导入Ollama指南
Repetion_Maxumim
embedding语言模型人工智能自然语言处理ai
此处以moka-ai/m3e-base模型下载为例。众所周知,HuggingFace仓库托管了诸多训练模型。DeepSeek官方也将完整满血版DeepSeek-R1:671B模型镜像托管在此仓库,但是目前国内无法直接从HugingFace下载。并且,一般为了快速部署,会选择Ollama这类管模型管理工具,类似Docker引擎一样,但是Ollama支持的模型镜像格式(如GGUF)HuggingFac
- 开源应用驱动企业新质生产力:Websoft9以EPP+AI+知识库助您领跑未来!
人工智能
开源应用驱动企业新质生产力:Websoft9以EPP+AI+知识库助您领跑未来在数字化转型加速的今天,企业新质生产力的核心已从传统资源投入转向技术驱动的效率革命。开源应用凭借其灵活性、成本优势和技术创新力,成为企业实现这一目标的关键引擎。作为开源技术与行业场景化落地的领航者,Websoft9通过企业应用平台(EPP)、AI智能引擎与知识库系统三位一体的解决方案,助力企业快速构建新一代生产力工具,实
- Langchain链式开发:打造高效、可扩展的AI应用
小南AI学院
langchain人工智能软件工程
1.Langchain链是什么?Langchain是一个开源框架,专门用于开发基于大型语言模型(LLMs)的应用程序。它允许开发者将各种组件(如模型、数据源、工具等)连接在一起,构建复杂的AI应用程序。“链”(Chain)在Langchain中是一个核心概念,它代表了多个组件的有序连接,用于完成特定任务。2.Langchain链的职责是什么?Langchain链的主要职责包括:流程编排:管理多个组
- git checkout 切换分支和版本回退
禾仔仔
gitgitgithubgitlab
1、切换分支1.1基本gitcheckout切换分支gitcheckout-bbranch新建分支并切换相当于gitbranchgitcheckoutps:新建的本地分支是在当前分支的基础上拉取下来的,工作中,一般下载好工程,会自动创建master分支(现在github是main分支),其他远程分支可以通过gitbranch-a查看,然后gitcheckout,切换到要开发分支。1.2带参数git
- JVM汇总篇
xk_一步一步来
JVMJVM汇总篇
转自:https://blog.csdn.net/wolf_love666/article/details/85712922书中内容来自于深入理解java虚拟机,作者周志明。会融合自己的知识和理解来记录下来,为了赚钱而奋斗!DayDayUp!!!前期准备:准备篇(一)内存管理内存如何划分、内存溢出的原因----点击这里内存分配和垃圾回收-----点击这里(二)虚拟机如何执行数据存储和访问(类文件结
- Linux驱动开发IO操作之阻塞与非阻塞
暗夜之眼007
Linux驱动驱动开发
阻塞IO当应用程序通过read读取或write写入设备文件的某些数据时,就会调用驱动程序的read或者write函数,此时可能会遇到没有数据可读或者写满的情况,这时如果驱动程序会进入睡眠,当有数据可读或者可写的时候唤醒再返回,我们称这种操作为阻塞IO。下图是阻塞式IO访问示意图:阻塞IO相关函数init_waitqueue_head函数init_waitqueue_head是Linux内核中用于
- 【Transformer-Hugging Face手册 07/10】 微调预训练模型
无水先生
人工智能高级阶段人工智能综合transformer深度学习人工智能
微调预训练模型-目录一、说明二、在本机PyTorch中微调预训练模型。2.1加载数据2.2训练2.2.1使用PyTorchTrainer进行训练2.3训练超参数2.4评价2.5训练类三、使用Keras训练TensorFlow模型3.1为Keras加载数据3.2将数据加载为tf.data.Dataset3.3数据加载器3.4优化器和学习率调度器3.5训练循环3.6评价四、结论一、说明 使用预训练模
- 草根版外卖避雷计划「数据库寄生 2.0」优化方案
cainiaojunshi
预算方案智慧城市
接上回计划省钱版【打败美团和饿了吗的机会越来越大了!#外卖避雷计划#】[特殊字符][特殊字符]-CSDN博客(含三端流程图+预算穿透表+风险应对)一、策划目标(草根版核心)实现单城外卖后厨监督轻量化:✅创作端:骑手/打假人扫码接单,视频自动同步(省90%录入时间)✅服务端:AI+算法自动跑批,日省2小时人工干预(年省2.22万)✅观看端:实时暴雷指数+悬赏助力,用户信任度提升40%✅终极目标:单城
- 输入10个数字,然后逆序输出。
|CXHAO|
Python数字反转数组循环字符输出
输入1234567890输出0987654321#includeusingnamespacestd;intmain(){inta[10];for(inti=0;i>a[i];}for(intj=9;j>=0;j--){cout<<a[j]<<'';}cout<<endl;return0;}
- 马斯克说的没错,DeepSeek确实厉害,但真正可怕的是...
PPT百科
人工智能powerpointpptDeepSeek马斯克
作者:PPT百科(PPTwiki.COM)发布日期:2025年2月25日“中国能做出DeepSeek这样的AI,我一点都不意外。”当马斯克在达沃斯论坛上说出这句话时,全球科技圈的目光再次聚焦到了这个中国AI独角兽身上。然而,这位“硅谷钢铁侠”的下一句话却耐人寻味:“但它还不是革命性的,我们的Grok3会更好。”马斯克的评价看似矛盾,实则揭示了AI竞争的核心逻辑——技术突破与市场落地的双重博弈。而D
- 鸿蒙HarmonyOS NEXT开发:自定义事件拦截(ArkTS组件事件)
「已注销」
鸿蒙ArkTSharmonyos华为鸿蒙android驱动开发
为组件提供自定义的事件拦截能力,开发者可根据事件在控件上按下时发生的位置,输入源等事件信息决定控件上的HitTestMode属性。说明:从APIVersion12开始支持。后续版本如有新增内容,则采用上角标单独标记该内容的起始版本。onTouchInterceptonTouchIntercept(callback:Callback)系统能力:SystemCapability.ArkUI.ArkUI
- ESP32-S3一款专为人工智能物联网打造的芯片
LS_learner
嵌入式人工智能物联网嵌入式硬件
ESP32-S3是一款专为AIoT(人工智能物联网)市场打造的MCU(微控制器单元)芯片,集成了2.4GHzWi-Fi和Bluetooth5(LE)功能。以下是对ESP32-S3的详细介绍:一、核心性能处理器:搭载Xtensa®32位LX7双核处理器,主频高达240MHz。内存:内置512KBSRAM(静态随机存取存储器),同时支持更大容量的高速OctalSPIflash和片外RAM,用户可配置数
- AI人工智能PPT内容案例参考
puerppt
PPT模板人工智能PPTppt
人工智能(AI)的PPT介绍内容提纲,可以帮助你在演示中全面而清晰地阐述AI的概念、历史、技术及应用。这些内容可以直接填入PPT的每一张幻灯片中,帮助你高效地介绍主题,文末精选了10套AI人工智能PPT模板,可下载幻灯片1:封面标题:人工智能(AI)的简介副标题:探索智能未来演讲者:你的名字日期:如2023年10月XX日幻灯片2:目录什么是人工智能人工智能的历史人工智能的基本技术人工智能的应用领域
- 从静态PPT到智能演讲——人工智能在演示文稿中的应用
知来者逆
智能算法人工智能powerpointLLM大语言模型GPTPPT
1.概述在这个信息过载的时代,能够吸引并持续吸引观众的注意力无疑成为了一项艰巨的任务。公众演讲领域正经历着一场由人工智能(AI)引领的革命。AI不仅在制作引人入胜的内容方面发挥作用,而且在分析演讲的传递方式上也起着关键作用,它正在彻底改变我们传递信息的传统模式。这篇深度博文将带您一探演示技术激动人心的未来,特别是聚焦于AI如何助力演讲者打造既具有影响力又富有吸引力的观众体验。从内容创作到演讲分析,
- Matlab/simulink 风储调频,风电调频,模糊控制,mpc模型预测,虚拟惯性控制,下垂控制。
风储wind-专业frequency
其他
风电采用虚拟惯性控制,储能采用下垂控制。风电利用模糊控制改变系数,根据风速和频率变化系数。做到了自适应控制。MPC通过状态空间表达式通过fk预测下一时刻fk+1频率,仿真结果表明预测频率和实际频率相差不大。因此可以用mpc预测频率,去改变风电出力。这样利用mpc的超前预测能力进而预测风电出力。风电采用虚拟惯性控制。1-模糊控制2-mpc控制。
- 人工智能演讲PPT:普及这一篇就够了
何秀琳Nessa
人工智能演讲PPT:普及这一篇就够了【下载地址】人工智能演讲PPT普及这一篇就够了人工智能演讲PPT:普及这一篇就够了欢迎来到本资源页面,这里提供一份精心制作的人工智能(AI)主题PPT,专为演讲、科普和学习场合设计项目地址:https://gitcode.com/Open-source-documentation-tutorial/12b6a欢迎来到本资源页面,这里提供一份精心制作的人工智能(A
- 适合企业内训的AI工具实操培训教程(37页PPT)(文末有下载方式)
极客11
数字化
详细资料请看本解读文章的最后内容。资料解读:适合企业内训的AI工具实操培训教程在当今数字化时代,人工智能(AI)技术迅速发展,深度融入到各个领域,AIGC(人工智能生成内容)更是成为内容创作的新趋势,为企业提升效率、创新发展带来了新契机。这份培训教程聚焦多种AI工具,尤其是DeepSeek,为企业员工提供了全面的实操指导。AIGC指利用人工智能技术自动生成文本、图像、音频、视频等内容,让AI协助甚
- HarmonyNext深度解析:ArkUI高效渲染与性能优化实战
披光人
harmonyOSubuntulinux运维
一、HarmonyNext渲染引擎技术演进(约1200字技术解析)HarmonyOSNext在UI渲染架构层面实现了重大突破,其创新的ArkUI渲染引擎采用分层异步架构设计。核心改进包括:原子化渲染管线采用基于Vulkan的跨平台渲染后端,通过原子化渲染指令拆分技术,实现绘制指令的并行执行能力。在华为Mate60系列实测中,复杂界面渲染延迟降低42%智能脏区检测机制基于机器学习的区域更新预测算法,
- 数据结构 -- 字符串
_安晓
数据结构数据结构
字符串串的定义串,即字符串(String)是由零个或多个字符组成的有限序列,一般记为S=‘a1a2a3a4’(n≥0)其中,S是串名,单引号括起来的是字符序列是串的值;ai可以是字母、数字或是其他字符;串中字符的个数n称为串的长度。n=0时的串称为空串(用∅表示)。例:(不同语言可能使用的边界符不同,Java、c等使用双引号(“”)Python等使用单引号(’‘))S="HelloWorld!"T
- 【颠覆认知】大模型开发终极实战:30分钟用LangChain打造「超级AI客服」系统(附全代码+黑科技调参技巧)
煜bart
人工智能
重磅提示:文末含99%开发者不知道的Prompt逆向注入破解方案!---###一、撕开大模型开发的遮羞布:传统方案的三大致命陷阱传统AI客服系统开发面临:1.对话记忆金鱼症(7轮对话必失忆)2.知识库更新堪比器官移植3.业务逻辑与AI模型强耦合我们
- 基于ChatGPT和GoogleScholar的文章总结器
莫达菲尼
chatgpt人工智能自然语言处理网络爬虫自动化
在当今信息爆炸的时代,科研人员每天都会面对大量的文献资料。为了更高效地筛选和理解这些资料,我们开发了一款基于ChatGPT和GoogleScholar的文章摘要工具。它能够自动抓取GoogleScholar上的研究文章,并利用OpenAI的GPT模型进行摘要生成,同时支持多语言输出,帮助打破语言障碍,加速科研进程。项目介绍本项目的目标是通过以下两方面提升科研效率:跨语言阅读:通过多语言摘要功能,帮
- 基于NXP+FPGA轨道交通3U机箱结构远程输入/输出模块(RIOM)
深圳信迈主板定制专家
轨道交通NXP+FPGAfpga开发人工智能大数据边缘计算运维
基于NXP+FPGA轨道交通6U机箱结构远程输入/输出模块(RIOM)RIOM使得数据通过就近的I/O源输入和输出。也可以直接将I/O源连接到列车计算机(如VCU),可以减少电缆用量从而节约成本。关键特性支持模拟和数字输入/输出。可配置的模块包括DI、DIO、MDO、RDO、AIO、PTI等。接口选项MVBRIOM设备支持MVB/CAN/串行链路三种接口;TRDPRIOM设备知此恨TRDP/CAN
- 基于LangChain-Chatchat实现的RAG-本地知识库的问答应用[5]-高阶实战微调
汀、人工智能
LLM工业级落地实践LLM技术汇总langchain人工智能大模型推理大模型微调p-tuningfastchatRAG
基于LangChain-Chatchat实现的RAG-本地知识库的问答应用[5]-高阶实战微调1.推荐的模型组合在默认的配置文件中,我们提供了以下模型组合LLM:Chatglm2-6bEmbeddingModels:m3e-baseTextSplitter:ChineseRecursiveTextSplitterKb_dataset:faiss我们推荐开发者根据自己的业务需求进行模型微调,如果不需
- BT、BT Mesh、WiFi、Zigbee技术对比分析
莫道桑榆晚-为霞尚满天
硬件工程网络协议信息与通信
一、蓝牙(Bluetooth,BT)1.技术原理核心概念:蓝牙是一种短距离(10-100米)无线通信技术,采用跳频扩频(FHSS)技术,通过快速切换频段(每秒1600次)避免干扰。跳频扩频(FHSS)原理:在2.4GHz频段的79个1MHz信道中,按伪随机序列快速切换频率。比喻:像两人在嘈杂派对上不断更换餐桌位置私聊,躲避他人监听。协议版本:经典蓝牙(BR/EDR):高功耗,支持音频传输(如耳机)
- 超详细的Numpy基础教程!!!
不会爬虫的闲鱼
numpy数据分析python
Numpy是一个开源的Python库,用于支持大型多维数组和矩阵运算,同时提供了大量的数学函数库。它是科学计算中非常重要的工具。Numpy在数据科学中非常重要,因为它提供了高效的数组处理能力和广泛的数学函数库,这对于处理大规模数据集、进行科学计算和机器学习等任务至关重要。一、安装与设置如何安装Numpypipinstallnumpy验证安装的方法importnumpyprint(numpy.__v
- 人工智能_大模型091_大模型工作流001_使用工作流的原因_处理复杂问题_多轮自我反思优化ReAct_COT思维链---人工智能工作笔记0236
添柴程序猿
大模型开发&神经网络人工智能大模型工作流COT思维链ReAct自我反思优化大模型工作流开发
#清理环境信息,与上课内容无关importosos.environ["LANGCHAIN_PROJECT"]=""os.environ["LANGCHAIN_API_KEY"]=""os.environ["LANGCHAIN_ENDPOINT"]=""os.environ["LANGCHAIN_TRACING_V2"]=""#安装所需要使用的包!pipinstallopenailanggraphA
- 【容器镜像】:获取原始 rootfs 及各系统大小对比
Talbot3的笔记
容器dockerlinux
之前一秒构建了alpine的容器镜像,甚至使用静态编译的应用不需要rootfs就可以运行,这也是golang在容器时代大流行的主要原因。如果不用科学上网,就可以从零构建基础IT设施,速度又很快,这大大增强了研发进度。下面介绍各rootfs的来源linuxcontainers,并根据images.linuxcontainers.org的镜像结构和搜索结果中提供的索引解析方法,我们可以通过以下步骤获取
- 【开源代码解读】AI检索系统R1-Searcher通过强化学习RL激励大模型LLM的搜索能力
accurater
人工智能深度学习R1-Searcher
关于R1-Searcher的报告:第一章:引言-AI检索系统的技术演进与R1-Searcher的创新定位1.1信息检索技术的范式转移在数字化时代爆发式增长的数据洪流中,信息检索系统正经历从传统关键词匹配到语义理解驱动的根本性变革。根据IDC的统计,2023年全球数据总量已突破120ZB,其中非结构化数据占比超过80%。这种数据形态的转变对检索系统提出了三个核心的挑战:语义歧义消除:如何准确理解"A
- flask--基础知识点--6--flask高并发处理
Raging__Fire
#flaskpythonflask
Flask是一个轻量级的PythonWeb框架,适合构建中小型应用。但是,对于高并发场景,Flask本身可能需要一些辅助工具和配置来提升性能。以下是一些优化Flask应用以处理高并发的方法:1.使用WSGI服务器Flask自带的开发服务器性能和稳定性不足以应对生产环境中的高并发请求,可以考虑使用更强大的WSGI服务器,如:Gunicorn:一个基于Python的WSGIHTTP服务器。uWSGI:
- 基于NXP+FPGA轨道交通3U机箱结构牵引控制单元
深圳信迈主板定制专家
轨道交通NXP+FPGAX86+FPGAfpga开发边缘计算人工智能大数据嵌入式硬件
基于NXP+FPGA轨道交通异步电机牵引控制单元(TCU-IM)异步电机牵引控制单元(TCU-IM)用于牵引逆变器-异步电机构成的牵引电传动系统,可采用车控或架控方式。执行高性能异步电机复矢量控制策略,具有响应迅速、有效可靠的防空转·滑行控制功能以及平稳、无冲击的带速重投技术。无速度传感器控制通过转速观察算法,推算出准确的转速和转子位置,在实际应用中,达到省去速度传感器的目的,降低成本并减少故障点
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,