最近公司的一个项目需要计算TVDI(Temperature Vegetation Dryness Index ,温度植被干旱指数) ,TVDI的计算公式如下(具体原理自行百度):
其中,为任意像元的地表温度;为某一NDVI对应的最小地表温度,对应的是湿边;为某一NDVI对应的最大地表温度,对应的是干边;a,b为湿边的拟合方程系数,c,d为干边的拟合方程系数。
在拟合干边和湿边的过程中,需要利用最小二乘方法来对有效的NDVI和Lst数据来进行线性拟合。因此,本文记录在工作中用C++实现的最小二乘拟合直线,关键是理解最小二乘拟合直线的基本原理,实现起来比较简单。具体的最小二乘原理再此不做过多的阐述,网上有大量的介绍资料,这里只给出形如的线性回归计算a,b系数以及r^2的最终计算公式,相关代码如下:
/*************************************************************************
最小二乘法拟合直线,y = a*x + b; n组数据; r-相关系数[-1,1],fabs(r)->1,说明x,y之间线性关系好,fabs(r)->0,x,y之间无线性关系,拟合无意义
a = (n*C - B*D) / (n*A - B*B)
b = (A*D - B*C) / (n*A - B*B)
r = E / F
其中:
A = sum(Xi * Xi)
B = sum(Xi)
C = sum(Xi * Yi)
D = sum(Yi)
E = sum((Xi - Xmean)*(Yi - Ymean))
F = sqrt(sum((Xi - Xmean)*(Xi - Xmean))) * sqrt(sum((Yi - Ymean)*(Yi - Ymean)))
**************************************************************************/
void LineFitLeastSquares(float *data_x, float *data_y, int data_n, vector &vResult)
{
float A = 0.0;
float B = 0.0;
float C = 0.0;
float D = 0.0;
float E = 0.0;
float F = 0.0;
for (int i=0; i
为了验证该算法的有效性,给出如下测试数据,数据来源为某论文的实验数据:
float pY[25] = { 10.98, 11.13, 12.51, 8.40, 9.27,
8.73, 6.36, 8.50, 7.82, 9.14,
8.24, 12.19, 11.88, 9.57, 10.94,
9.58, 10.09, 8.11, 6.83, 8.88,
7.68, 8.47, 8.86, 10.38, 11.08 };
float pX[25] = { 35.3, 29.7, 30.8, 58.8, 61.4,
71.3, 74.4, 76.6, 70.7, 57.5,
46.4, 28.9, 28.1, 39.1, 46.8,
48.5, 59.3, 70.0, 70.0, 74.5,
72.1, 58.1, 44.6, 33.4, 28.6 };
该数据在Excel的拟合结果为,其中。
第一次发CSDN博客,不足之处请各位多多指教。