- TensorRT-LLM:大模型推理加速引擎的架构与实践
前言:技术背景与发展历程:随着GPT-4、LLaMA等千亿级参数模型的出现,传统推理框架面临三大瓶颈:显存占用高(单卡可达80GB)、计算延迟大(生成式推理需迭代处理)、硬件利用率低(Transformer结构存在计算冗余)。根据MLPerf基准测试,原始PyTorch推理的token生成速度仅为12.3tokens/s(A100显卡)。一、TensorRT-LLM介绍:TensorRT-LLM是
- 服务器无对应cuda版本安装pytorch-gpu[自用]
片月斜生梦泽南
pytorch
服务器无对应cuda版本安装pytorch-gpu服务器无对应cuda版本安装pytorch-gpu网址下载非root用户安装tmux查看服务器ubuntu版本conda安装tensorflow-gpu安装1.x版本服务器无对应cuda版本安装pytorch-gpu网址GPU版本的pytorch、pytorchvision的下载链接https://download.pytorch.org/whl/
- Python机器学习与深度学习:决策树、随机森林、XGBoost与LightGBM、迁移学习、循环神经网络、长短时记忆网络、时间卷积网络、自编码器、生成对抗网络、YOLO目标检测等
WangYan2022
机器学习/深度学习Python机器学习深度学习随机森林迁移学习
融合最新技术动态与实战经验,旨在系统提升以下能力:①掌握ChatGPT、DeepSeek等大语言模型在代码生成、模型调试、实验设计、论文撰写等方面的实际应用技巧②深入理解深度学习与经典机器学习算法的关联与差异,掌握其理论基础③熟练运用PyTorch实现各类深度学习模型,包括迁移学习、循环神经网络(RNN)、长短时记忆网络(LSTM)、时间卷积网络(TCN)、自编码器、生成对抗网络(GAN)、YOL
- Python打卡:Day40
#先继续之前的代码importtorchimporttorch.nnasnnimporttorch.optimasoptimfromtorch.utils.dataimportDataLoader,Dataset#DataLoader是PyTorch中用于加载数据的工具fromtorchvisionimportdatasets,transforms#torchvision是一个用于计算机视觉的库,
- Ubuntu下安装多版本CUDA及灵活切换全攻略
芯作者
D2:ubuntulinuxubuntu
——释放深度学习潜能,告别版本依赖的烦恼!**为什么需要多版本CUDA?在深度学习、科学计算等领域,不同框架(TensorFlow、PyTorch等)对CUDA版本的要求各异。同时升级框架或维护旧项目时,版本冲突频发。多版本CUDA共存+一键切换是高效开发的刚需!本文将手把手教你实现这一能力,并分享独创的“动态软链接+环境隔离”技巧,让版本管理行云流水!环境准备硬件要求NVIDIA显卡(支持CUD
- PyTorch安装总失败?看完这篇保姆级教程,从0到1轻松搞定!
喜欢编程就关注我
pytorch人工智能python
引言:为什么你装不好PyTorch?“CUDA版本不匹配?pip安装超时?conda环境冲突?”新手安装PyTorch的坑比代码bug还多!这篇博客整合CSDN高赞实战技巧,手把手教你绕过10大安装陷阱,附赠代码级验证指南!一、安装前必看:环境检查清单检查项操作方法Python版本python--version(推荐3.8-3.11)CUDA驱动nvidia-smi(仅NVIDIA显卡需要)con
- Python打卡DAY36
DAY36:复习日恩师@浙大疏锦行在PyTorch中,nn.Model是所有神经网络模块的基类,为构建和训练神经网络提供了丰富的方法,如下:1.模型构建与参数管理__init__方法功能:用于初始化神经网络模块的参数和子模块。在自定义网络时,通常会重写此方法来定义网络的结构。细节解释:在__init__方法中,可以定义各种层,如卷积层、全连接层等。这些层会被自动注册为子模块,方便后续管理。impo
- 动手学深度学习13.7. 单发多框检测(SSD)-笔记&练习(PyTorch)
scdifsn
深度学习笔记pytorchssd单发多框检测(SSD)目标检测mAP评价
以下内容为结合李沐老师的课程和教材补充的学习笔记,以及对课后练习的一些思考,自留回顾,也供同学之人交流参考。本节课程地址:45SSD实现【动手学深度学习v2】_哔哩哔哩_bilibili本节教材地址:13.7.单发多框检测(SSD)—动手学深度学习2.0.0documentation本节开源代码:…>d2l-zh>pytorch>chapter_optimization>ssd.ipynb单发多框
- 动手学深度学习3.3线性回归的简洁实现-笔记&练习(PyTorch)
scdifsn
深度学习线性回归笔记pytorch
以下内容为结合李沐老师的课程和教材补充的学习笔记,以及对课后练习的一些思考,自留回顾,也供同学之人交流参考。本节课程地址:线性回归的简洁实现_哔哩哔哩_bilibili本节教材地址:3.3.线性回归的简洁实现—动手学深度学习2.0.0documentation(d2l.ai)本节开源代码:...>d2l-zh>pytorch>chapter_linear-networks>linear-regre
- 【PyTorch】PyTorch中torch.nn模块的卷积层
PyTorch深度学习总结第七章PyTorch中torch.nn模块的卷积层文章目录PyTorch深度学习总结前言一、torch.nn模块1.模块的基本组成部分1.1层(Layers)1.2损失函数(LossFunctions)1.3激活函数(ActivationFunctions)2.自定义神经网络模型3.模块的优势二、torch.nn模块的卷积层1.卷积的定义2.常见的卷积层3.卷积层的重要参
- 【PyTorch】PyTorch中torch.nn模块的循环层
PyTorch深度学习总结第九章PyTorch中torch.nn模块的循环层文章目录PyTorch深度学习总结前言一、循环层1.简单循环层(RNN)2.长短期记忆网络(LSTM)3.门控循环单元(GRU)4.双向循环层二、循环层参数1.输入维度相关参数2.隐藏层相关参数3.其他参数三、函数总结前言上文介绍了PyTorch中介绍了池化和torch.nn模块中的池化层函数,本文将进一步介绍torch.
- 【PyTorch】PyTorch中torch.nn模块的池化层
咸鱼鲸
PyTorchpytorch人工智能python
PyTorch深度学习总结第八章PyTorch中torch.nn模块的池化层文章目录PyTorch深度学习总结前言一、池化1.定义2.目的3.常见类型4.实际效果二、池化层1.常用的池化层2.池化层的参数2.1最大池化层(MaxPooling)和平均池化层(AveragePooling)2.2自适应最大池化层(AdaptiveMaxPooling)和自适应平均池化层(AdaptiveAverage
- PyTorch深度学习快速入门教程【小土堆】详细学习笔记(第1-11个视频笔记)
胡说八道的Dr. Zhu
深度学习pytorch学习
本学习笔记源自于B站up主【我是土堆】的视频教程:PyTorch深度学习快速入门教程(绝对通俗易懂!)【小土堆】本博客是该视频教程中第1-11个视频的详细学习笔记,第12-22个视频、第23-33个视频的详细学习笔记链接如下:PyTorch深度学习快速入门教程【小土堆】详细学习笔记(第12-22个视频笔记)PyTorch深度学习快速入门教程【小土堆】详细学习笔记(第23-33个视频笔记)目录1、P
- 深度学习Pytorch(一)
Bgemini
深度学习pytorch深度学习python
深度学习Pytorch(一)前言:必须使用英伟达显卡才能使用cuda(显卡加速)!移除环境:condaremove-npytorch--all一、安装Pytorch下载Anaconda打开AnacondaPrompt创建一个Pytorch环境:condacreate-npytorchpython=3.9激活Pytorch环境:condaactivatepytorch查看当前包:piplist安装P
- PyTorch深度学习优化实战:从理论到实践的现代化技能指南
智算菩萨
深度学习pytorch人工智能
引言:现代PyTorch开发的核心思维在深度学习技术日新月异的今天,掌握PyTorch不仅仅意味着能够搭建和训练神经网络,更重要的是理解如何高效地利用现代硬件资源、优化模型性能并构建可扩展的AI系统。随着PyTorch2.x系列的成熟,特别是最新2.7版本的发布,框架为开发者提供了前所未有的优化工具和性能潜力。本文将深入探讨现代PyTorch开发中的核心优化技能,从编译器优化到注意力机制革新,从内
- PyTorch笔记3----------统计学相关函数
HuashuiMu花水木
PyTorch笔记pytorch笔记人工智能
1.基础函数importtorcha=torch.rand(2,2)print("a:\n",a)print('########################')print("平均值:\n",torch.mean(a,dim=0))print("总和:\n",torch.sum(a,dim=0))print("所有元素的积:\n",torch.prod(a,dim=0))print("最大值:\
- PyTorch 2.7深度技术解析:新一代深度学习框架的革命性演进
智算菩萨
深度学习pytorch人工智能
引言:站在AI基础设施变革的历史节点在2025年这个充满变革的年份,PyTorch团队于4月23日正式发布了2.7.0版本,随后在6月4日推出了2.7.1补丁版本,标志着这个深度学习领域最具影响力的框架再次迎来了重大突破。这不仅仅是一次常规的版本更新,而是一次面向未来计算架构和AI应用场景的全面重构。从底层硬件支持到上层API设计,从编译器优化到注意力机制革新,PyTorch2.7展现出了前所未有
- The current PyTorch install supports CUDA capabilities sm_37 sm_50 sm_60 sm_70.
weixin_66009678
pytorch人工智能python
出现如下报错:NVIDIAGeForceRTX3090withCUDAcapabilitysm_86isnotcompatiblewiththecurrentPyTorchinstallation.ThecurrentPyTorchinstallsupportsCUDAcapabilitiessm_37sm_50sm_60sm_70.IfyouwanttousetheNVIDIAGeForceRT
- 【零基础学AI】第29讲:BERT模型实战 - 情感分析
1989
0基础学AIbert人工智能深度学习神经网络cnnpython自然语言处理
本节课你将学到BERT模型的核心原理与优势HuggingFaceTransformers库的BERT接口使用情感分析任务的完整实现流程模型微调(Fine-tuning)技巧开始之前环境要求Python3.8+需要安装的包:pipinstalltorchtransformersdatasetspandastqdmGPU推荐(可加速训练)前置知识第28讲Transformer基础基本PyTorch使用
- PyTorch 详细安装教程及核心API使用指南
慕婉0307
pytorchpytorch人工智能python
一、PyTorch简介PyTorch是由FacebookAIResearch(FAIR)于2016年开发的开源深度学习框架,现已成为学术界和工业界最受欢迎的深度学习工具之一。其核心优势在于采用了动态计算图(DynamicComputationGraph,又称"define-by-run"机制),这使得开发者能够像编写普通Python代码一样构建神经网络,并在运行时动态调整计算图结构,大大提高了研究
- 深度模型训练,加速数据读取遇到显卡跑不满的问题
不是吧这都有重名
遇到的问题llama人工智能LLMpython
实测在pytorch的dataloader中使用prefetch_factor参数的时候,如果数据在机械硬盘上显卡始终是跑不满的,瓶颈在数据预加载速度上,当数据放在固态硬盘的时候就可以跑满。问题排查过程:一直在跑模型,但是数据量比较大,之前有段时间还是比较头疼显卡跑不满的。后来直接用钞能力,加了内存条,将数据缓存后一次性读到内存中终于可以跑满了,然后后面就一直没管这个了,唯一的缺点就是每次开始训练
- yolov5训练失败总结
BTU_YC
深度学习pythonpytorch
yolov5训练失败总结版本原因:在进行训练时,出现如下报错:UserWarning:Detectedcalloflr_scheduler.step()beforeoptimizer.step().InPyTorch1.1.0andlater,youshouldcallthemintheoppositeorder:optimizer.step()beforelr_scheduler.step().
- PyTorch中 item()、tolist()使用详解和实战示例
点云SLAM
PyTorch深度学习pytorch人工智能python深度学习张量的操作itemtolist
在PyTorch中,.item()和.tolist()是两个常用于从Tensor中提取Python原生数据的方法,尤其在调试、日志记录或将结果传给非张量库时非常有用。下面是它们的详解与代码示例。1..item()方法用途:将仅包含一个元素的张量(即标量张量)转换为对应的Python原生数据类型(float,int,等)。限制:只能用于只包含一个元素的Tensor,否则会报错。示例代码:import
- error -- unsupported GNU version gcc later than 10 are not supported;(gcc、g++)
众人(某音、某书同名)
服务器linux运维
服务器跑dit时编译flash-atten以及pytorch的cuda版本检查出错,分别报错题目以及如下:想了下是系统找不到编译器subprocess.CalledProcessError:Command'['which','c++']'returnednon-zeroexitstatus1.备案,以后有人要用12我还得换回来方案一:更改gcc和gcc+的版本没有合适的版本的话需要root权限指定
- 【PyTorch】教程:torch.nn.Mish
torch.nn.Mish原型CLASStorch.nn.Mish(inplace=False)定义Mish(x)=x∗Tanh(Softplus(x))\text{Mish}(x)=x∗\text{Tanh}(\text{Softplus}(x))Mish(x)=x∗Tanh(Softplus(x))图代码importtorchimporttorch.nnasnnm=nn.Mish()input
- 【PyTorch】教程:torch.nn.GELU
老周有AI~算法定制
PyTorchpytorch深度学习python
torch.nn.GELU原型CLASStorch.nn.GELU(approximate='none')参数approximate(str,optional)–gelu近似算法用none或者tanh,默认为none;定义高斯误差线性单元函数GELU(x)=x∗ϕ(x)\text{GELU}(x)=x*\phi(x)GELU(x)=x∗ϕ(x)其中ϕ(x)\phi(x)ϕ(x)为高斯分布的累积分布
- PyTorch:Dropout 操作 torch.nn.Dropout()
sweettea~
Pythonpytorch深度学习
torch.nn.Dropout()是PyTorch中对Dropout层的其中一个实现,该函数底层调用torch.nn.functional.dropout();1、torch.nn.Dropout(p=0.5,inplace=False)其作用是,在training模式下,基于伯努利分布抽样,以概率p对张量input的值随机置0;training模式中,对输出以1/(1-p)进行scaling,
- PyTorch 的 torch.nn 模块学习
torch.nn是PyTorch中专门用于构建和训练神经网络的模块。它的整体架构分为几个主要部分,每部分的原理、要点和使用场景如下:1.nn.Module原理和要点:nn.Module是所有神经网络组件的基类。任何神经网络模型都应该继承nn.Module,并实现其forward方法。使用场景:用于定义和管理神经网络模型,包括层、损失函数和自定义的前向传播逻辑。主要API和使用场景:__init__
- AttributeError: ‘numpy.ndarray‘ object has no attribute ‘unsqueeze‘
ddfa1234
numpypython深度学习
z=z*pts_depth.unsqueeze(1)*0.1AttributeError:'numpy.ndarray'objecthasnoattribute'unsqueeze'这个错误是因为unsqueeze()方法是PyTorch张量的方法,而不是NumPy数组的方法。在这里,pts_depth是一个NumPy数组,因此不能使用unsqueeze()方法。如果要在NumPy中实现类似于un
- torch.nn.init.kaiming_normal_
参考(5条消息)PytorchKaiming初始化(Initialization)中fan_in和fan_out的区别/应用场景_bxdzyhx的博客-CSDN博客torch.nn.init.kaiming_normal_使用正态分布对输入张量进行赋值fan_in如果权重是通过线性层(卷积或全连接)隐性确定的,则需设置mode=fan_in。例子:importtorchlinear_layer=t
- 对于规范和实现,你会混淆吗?
yangshangchuan
HotSpot
昨晚和朋友聊天,喝了点咖啡,由于我经常喝茶,很长时间没喝咖啡了,所以失眠了,于是起床读JVM规范,读完后在朋友圈发了一条信息:
JVM Run-Time Data Areas:The Java Virtual Machine defines various run-time data areas that are used during execution of a program. So
- android 网络
百合不是茶
网络
android的网络编程和java的一样没什么好分析的都是一些死的照着写就可以了,所以记录下来 方便查找 , 服务器使用的是TomCat
服务器代码; servlet的使用需要在xml中注册
package servlet;
import java.io.IOException;
import java.util.Arr
- [读书笔记]读法拉第传
comsci
读书笔记
1831年的时候,一年可以赚到1000英镑的人..应该很少的...
要成为一个科学家,没有足够的资金支持,很多实验都无法完成
但是当钱赚够了以后....就不能够一直在商业和市场中徘徊......
- 随机数的产生
沐刃青蛟
随机数
c++中阐述随机数的方法有两种:
一是产生假随机数(不管操作多少次,所产生的数都不会改变)
这类随机数是使用了默认的种子值产生的,所以每次都是一样的。
//默认种子
for (int i = 0; i < 5; i++)
{
cout<<
- PHP检测函数所在的文件名
IT独行者
PHP函数
很简单的功能,用到PHP中的反射机制,具体使用的是ReflectionFunction类,可以获取指定函数所在PHP脚本中的具体位置。 创建引用脚本。
代码:
[php]
view plain
copy
// Filename: functions.php
<?php&nbs
- 银行各系统功能简介
文强chu
金融
银行各系统功能简介 业务系统 核心业务系统 业务功能包括:总账管理、卡系统管理、客户信息管理、额度控管、存款、贷款、资金业务、国际结算、支付结算、对外接口等 清分清算系统 以清算日期为准,将账务类交易、非账务类交易的手续费、代理费、网络服务费等相关费用,按费用类型计算应收、应付金额,经过清算人员确认后上送核心系统完成结算的过程 国际结算系
- Python学习1(pip django 安装以及第一个project)
小桔子
pythondjangopip
最近开始学习python,要安装个pip的工具。听说这个工具很强大,安装了它,在安装第三方工具的话so easy!然后也下载了,按照别人给的教程开始安装,奶奶的怎么也安装不上!
第一步:官方下载pip-1.5.6.tar.gz, https://pypi.python.org/pypi/pip easy!
第二部:解压这个压缩文件,会看到一个setup.p
- php 数组
aichenglong
PHP排序数组循环多维数组
1 php中的创建数组
$product = array('tires','oil','spark');//array()实际上是语言结构而不 是函数
2 如果需要创建一个升序的排列的数字保存在一个数组中,可以使用range()函数来自动创建数组
$numbers=range(1,10)//1 2 3 4 5 6 7 8 9 10
$numbers=range(1,10,
- 安装python2.7
AILIKES
python
安装python2.7
1、下载可从 http://www.python.org/进行下载#wget https://www.python.org/ftp/python/2.7.10/Python-2.7.10.tgz
2、复制解压
#mkdir -p /opt/usr/python
#cp /opt/soft/Python-2
- java异常的处理探讨
百合不是茶
JAVA异常
//java异常
/*
1,了解java 中的异常处理机制,有三种操作
a,声明异常
b,抛出异常
c,捕获异常
2,学会使用try-catch-finally来处理异常
3,学会如何声明异常和抛出异常
4,学会创建自己的异常
*/
//2,学会使用try-catch-finally来处理异常
- getElementsByName实例
bijian1013
element
实例1:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/x
- 探索JUnit4扩展:Runner
bijian1013
java单元测试JUnit
参加敏捷培训时,教练提到Junit4的Runner和Rule,于是特上网查一下,发现很多都讲的太理论,或者是举的例子实在是太牵强。多搜索了几下,搜索到两篇我觉得写的非常好的文章。
文章地址:http://www.blogjava.net/jiangshachina/archive/20
- [MongoDB学习笔记二]MongoDB副本集
bit1129
mongodb
1. 副本集的特性
1)一台主服务器(Primary),多台从服务器(Secondary)
2)Primary挂了之后,从服务器自动完成从它们之中选举一台服务器作为主服务器,继续工作,这就解决了单点故障,因此,在这种情况下,MongoDB集群能够继续工作
3)挂了的主服务器恢复到集群中只能以Secondary服务器的角色加入进来
2
- 【Spark八十一】Hive in the spark assembly
bit1129
assembly
Spark SQL supports most commonly used features of HiveQL. However, different HiveQL statements are executed in different manners:
1. DDL statements (e.g. CREATE TABLE, DROP TABLE, etc.)
- Nginx问题定位之监控进程异常退出
ronin47
nginx在运行过程中是否稳定,是否有异常退出过?这里总结几项平时会用到的小技巧。
1. 在error.log中查看是否有signal项,如果有,看看signal是多少。
比如,这是一个异常退出的情况:
$grep signal error.log
2012/12/24 16:39:56 [alert] 13661#0: worker process 13666 exited on s
- No grammar constraints (DTD or XML schema).....两种解决方法
byalias
xml
方法一:常用方法 关闭XML验证
工具栏:windows => preferences => xml => xml files => validation => Indicate when no grammar is specified:选择Ignore即可。
方法二:(个人推荐)
添加 内容如下
<?xml version=
- Netty源码学习-DefaultChannelPipeline
bylijinnan
netty
package com.ljn.channel;
/**
* ChannelPipeline采用的是Intercepting Filter 模式
* 但由于用到两个双向链表和内部类,这个模式看起来不是那么明显,需要仔细查看调用过程才发现
*
* 下面对ChannelPipeline作一个模拟,只模拟关键代码:
*/
public class Pipeline {
- MYSQL数据库常用备份及恢复语句
chicony
mysql
备份MySQL数据库的命令,可以加选不同的参数选项来实现不同格式的要求。
mysqldump -h主机 -u用户名 -p密码 数据库名 > 文件
备份MySQL数据库为带删除表的格式,能够让该备份覆盖已有数据库而不需要手动删除原有数据库。
mysqldump -–add-drop-table -uusername -ppassword databasename > ba
- 小白谈谈云计算--基于Google三大论文
CrazyMizzz
Google云计算GFS
之前在没有接触到云计算之前,只是对云计算有一点点模糊的概念,觉得这是一个很高大上的东西,似乎离我们大一的还很远。后来有机会上了一节云计算的普及课程吧,并且在之前的一周里拜读了谷歌三大论文。不敢说理解,至少囫囵吞枣啃下了一大堆看不明白的理论。现在就简单聊聊我对于云计算的了解。
我先说说GFS
&n
- hadoop 平衡空间设置方法
daizj
hadoopbalancer
在hdfs-site.xml中增加设置balance的带宽,默认只有1M:
<property>
<name>dfs.balance.bandwidthPerSec</name>
<value>10485760</value>
<description&g
- Eclipse程序员要掌握的常用快捷键
dcj3sjt126com
编程
判断一个人的编程水平,就看他用键盘多,还是鼠标多。用键盘一是为了输入代码(当然了,也包括注释),再有就是熟练使用快捷键。 曾有人在豆瓣评
《卓有成效的程序员》:“人有多大懒,才有多大闲”。之前我整理了一个
程序员图书列表,目的也就是通过读书,让程序员变懒。 程序员作为特殊的群体,有的人可以这么懒,懒到事情都交给机器去做,而有的人又可以那么勤奋,每天都孜孜不倦得
- Android学习之路
dcj3sjt126com
Android学习
转自:http://blog.csdn.net/ryantang03/article/details/6901459
以前有J2EE基础,接触JAVA也有两三年的时间了,上手Android并不困难,思维上稍微转变一下就可以很快适应。以前做的都是WEB项目,现今体验移动终端项目,让我越来越觉得移动互联网应用是未来的主宰。
下面说说我学习Android的感受,我学Android首先是看MARS的视
- java 遍历Map的四种方法
eksliang
javaHashMapjava 遍历Map的四种方法
转载请出自出处:
http://eksliang.iteye.com/blog/2059996
package com.ickes;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Map.Entry;
/**
* 遍历Map的四种方式
- 【精典】数据库相关相关
gengzg
数据库
package C3P0;
import java.sql.Connection;
import java.sql.SQLException;
import java.beans.PropertyVetoException;
import com.mchange.v2.c3p0.ComboPooledDataSource;
public class DBPool{
- 自动补全
huyana_town
自动补全
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><html xmlns="http://www.w3.org/1999/xhtml&quo
- jquery在线预览PDF文件,打开PDF文件
天梯梦
jquery
最主要的是使用到了一个jquery的插件jquery.media.js,使用这个插件就很容易实现了。
核心代码
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.
- ViewPager刷新单个页面的方法
lovelease
androidviewpagertag刷新
使用ViewPager做滑动切换图片的效果时,如果图片是从网络下载的,那么再子线程中下载完图片时我们会使用handler通知UI线程,然后UI线程就可以调用mViewPager.getAdapter().notifyDataSetChanged()进行页面的刷新,但是viewpager不同于listview,你会发现单纯的调用notifyDataSetChanged()并不能刷新页面
- 利用按位取反(~)从复合枚举值里清除枚举值
草料场
enum
以 C# 中的 System.Drawing.FontStyle 为例。
如果需要同时有多种效果,
如:“粗体”和“下划线”的效果,可以用按位或(|)
FontStyle style = FontStyle.Bold | FontStyle.Underline;
如果需要去除 style 里的某一种效果,
- Linux系统新手学习的11点建议
刘星宇
编程工作linux脚本
随着Linux应用的扩展许多朋友开始接触Linux,根据学习Windwos的经验往往有一些茫然的感觉:不知从何处开始学起。这里介绍学习Linux的一些建议。
一、从基础开始:常常有些朋友在Linux论坛问一些问题,不过,其中大多数的问题都是很基础的。例如:为什么我使用一个命令的时候,系统告诉我找不到该目录,我要如何限制使用者的权限等问题,这些问题其实都不是很难的,只要了解了 Linu
- hibernate dao层应用之HibernateDaoSupport二次封装
wangzhezichuan
DAOHibernate
/**
* <p>方法描述:sql语句查询 返回List<Class> </p>
* <p>方法备注: Class 只能是自定义类 </p>
* @param calzz
* @param sql
* @return
* <p>创建人:王川</p>
* <p>创建时间:Jul