本说明旨在在ubuntu16.04的服务器上的普通用户中创建深度学习环境Tensorflow、Theano
系统管理员用户:
$sudo adduser vitamin
使用如下命令可以添加到用户组(超级用户组)。
添加管理员权限:
$sudo usermod -aG sudo vitmain
其中a:表示添加,G:指定组名
从用户组中删除指定用户:
sudo usermod -G 用户组名 username
把vitamin用户添加到组1和组2
sudo usermod -G 组1 -G 组2 vitamin
其中 -G 表示:加到组1 和 组2,可以添加到多个组,当然也可以是一个组。
-G的含义是把用户添加到指定的用户组,但是会自动从其他组中删除。
-a的含义是追加,但不会从其他组中删除。
另外还有修改/etc/sudoers文件的方法。
~#mkdir sotfware
~#cd sotfware
~/sotfware # mkdir cuda
运行下载的安装包
sh cuda_8.0.61_375.26_linux.run.26_linux-run
输入:q 退出阅读EULA
输入:accept
Do you accept the previously read EULA?
accept/decline/quit: accept
输入:n ;因为之前安装的gpu驱动器版本高。
Install NVIDIA Accelerated Graphics Driver for Linux-x86_64 375.26?
(y)es/(n)o/(q)uit: n
输入:y ;
Install the CUDA 8.0 Toolkit?
(y)es/(n)o/(q)uit: y
输入:安装目录;
Enter Toolkit Location
[ default is /usr/local/cuda-8.0 ]: /home/vitamin/software/cuda
输入:n;不安装符号链接
Do you want to install a symbolic link at /usr/local/cuda?
(y)es/(n)o/(q)uit: n
输入:y;安装cuda8.0 samples
Install the CUDA 8.0 Samples?
(y)es/(n)o/(q)uit: y
Enter CUDA Samples Location
[ default is /home/vitamin ]: /home/vitamin
修改配置文件.bashrc
export PATH=/home/vitamin/software/cuda/bin:$PATH
export LD_LIBRARY_PATH=/home/vitamin/software/cuda/lib64:$LD_LIBRARY_PATH
使得.bashrc生效
source .bashrc
测试cuda:
进入测试目录:
cd /home/vitamin/NVIDIA_CUDA-8.0_Samples/1_Utilities/deviceQuery
编译:
make -j4
运行:
./deviceQuery
输出:结果中有Result = PASS 表示安装成功
deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 9.1, CUDA Runtime Version = 8.0, NumDevs = 2, Device0 = GeForce GTX 1080 Ti, Device1 = GeForce GTX 1080 Ti
Result = PASS
解压cudnn-8.0-linux-x64-v6.0.tgz后一共有5个文件,需要拷贝到对应lib64,include目录下
min@server-11:/home/bigdata/download$ tar xvf cudnn-8.0-linux-x64-v6.0.tgz -C /home/min/software
cuda/include/cudnn.h
cuda/lib64/libcudnn.so
cuda/lib64/libcudnn.so.6
cuda/lib64/libcudnn.so.6.0.21
cuda/lib64/libcudnn_static.a
进入:Anaconda2-5.0.1-Linux-x86_64.sh 目录 执行
# sh Anaconda2-5.0.1-Linux-x86_64.sh
# yes
# enter
重新打开一个终端安装tensorflow-gpu
pip install tensorflow-gpu==1.4.1
在Ancoanda2中安装python3.5环境
# conda create -n py3 python=3.5
激活py3环境
# source activate py3
安装tensorflow-gpu1.4.1
(py3)# pip install tensorflow-gpu==1.4.1
由于国内https://storage.googleapis.com 无法访问,故运行
pip install --upgrade https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.4.0-cp34-cp34m-linux_x86_64.whl
会提示安装失败!
1.生成配置文件:
$jupyter notebook --generate-config
2.生成密码:
打开python终端
In [1]: from IPython.lib import passwd
In [2]: passwd()
Enter password:
Verify password:
Out[2]: 'sha1:xxxxxxxxxxxxxx'
3.修改配置文件:
vim ~/.jupyter/jupyter_notebook_config.py
在配置文件中加入以下内容:
c.NotebookApp.ip='*'
c.NotebookApp.password = u'sha1:414040d3d9a2:897ca67086f86d84f82333224ec97ade98b533ba'
c.NotebookApp.open_browser = False
c.NotebookApp.port =18888
c.IPKernelApp.pylab = 'inline'
4.启动Jupyter notebook
在当前用户目录下启动jupyter notebook
$cd ~
~$nohup jupyter notebook &
例如:
vitamin@server-11:~$ nohup jupyter notebook &
[2] 12327
vitamin@server-11:~$ nohup: 忽略输入并把输出追加到'nohup.out'
vitamin@server-11:~$
停止jupyter notebook服务器后台运行:
查看正在执行的python进程:
~#ps -ef | grep python
min 31598 31342 0 09:16 pts/8 00:00:01 /home/min/anaconda2/bin/python
~#kill -9 31598【pid】
# 一般通过以下这条命令安装python3.6环境
# conda create -n py36 python=3.6
启动 python3环境:
~# source activate py36
通过以下两步注册ipython运行核:
【py36】~# conda install notebook ipykernel
【py36】~# ipython kernel install --user
【py36】~#source deactivate py36
~#jupyter notebook
# 一般通过以下这条命令安装python3.6环境
# conda create -n py27 python=2.7
~#source activate py27
【py27】~#conda install notebook ipykernel
【py27】~#ipython kernel install --user
【py27】~#source deactivate py27
~#jupyter notebook
conda环境查看
多环境注册:
kernel注册目录查看
(py3) ~: ipython kernel install --user --name python36 --display-name "python36"
一定要注意 :加 name;并去对应的目录看看;
1.在服务器上使用端口6006启动tensorboard
用户名@服务器:~# tensorboard --logdir=你的日志文件 --port=6006
2.连接ssh时,将服务器的6006端口重定向到自己机器上来
用户名@本地机器:~# ssh -L 16006:127.0.0.1:6006 username@remote_server_ip -p your_sshport
3.在本地浏览器中输入以下地址
用户名@机器:~# tensorboard --logdir=你的日志文件 --port=6006
127.0.0.1:16006
方法一:修改grup配置文件
sudo vim /etc/default/grub
# The resolution used on graphical terminal
# note that you can use only modes which your graphic card supports via VBE
# you can see them in real GRUB with the command `vbeinfo'
#GRUB_GFXMODE=640x480
# 这里分辨率自行设置
修改这行:
GRUB_GFXMODE=1024x768
更新:
sudo update-grub
方法二:
设置一下source源和pip源
cd /etc/apt/
sudo cp sources.list sources.list.bak
sudo vi sources.list
加入文件:
deb-src http://archive.ubuntu.com/ubuntu xenial main restricted #Added by software-properties
deb http://mirrors.aliyun.com/ubuntu/ xenial main restricted
deb-src http://mirrors.aliyun.com/ubuntu/ xenial main restricted multiverse universe #Added by software-properties
deb http://mirrors.aliyun.com/ubuntu/ xenial-updates main restricted
deb-src http://mirrors.aliyun.com/ubuntu/ xenial-updates main restricted multiverse universe #Added by software-properties
deb http://mirrors.aliyun.com/ubuntu/ xenial universe
deb http://mirrors.aliyun.com/ubuntu/ xenial-updates universe
deb http://mirrors.aliyun.com/ubuntu/ xenial multiverse
deb http://mirrors.aliyun.com/ubuntu/ xenial-updates multiverse
deb http://mirrors.aliyun.com/ubuntu/ xenial-backports main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ xenial-backports main restricted universe multiverse #Added by software-properties
deb http://archive.canonical.com/ubuntu xenial partner
deb-src http://archive.canonical.com/ubuntu xenial partner
deb http://mirrors.aliyun.com/ubuntu/ xenial-security main restricted
deb-src http://mirrors.aliyun.com/ubuntu/ xenial-security main restricted multiverse universe #Added by software-properties
deb http://mirrors.aliyun.com/ubuntu/ xenial-security universe
deb http://mirrors.aliyun.com/ubuntu/ xenial-security multiverse
最后更新一下:
sudo apt-get update
sudo apt-get upgrade
安装1080TI显卡驱动:
sudo apt-get purge nvidia*
sudo add-apt-repository ppa:graphics-drivers/ppa
sudo apt-get update && sudo apt-get install nvidia-384 nvidia-settings
安装完毕后重启机器,运行 nvidia-smi,看看生效的显卡驱动:
会有显卡驱动信息详细显示
![会有显卡驱动信息详细显示](http://www.52nlp.cn/%E4%BB%8E%E9%9B%B6%E5%BC%80%E5%A7%8B%E6%90%AD%E5%BB%BA%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0%E6%9C%8D%E5%8A%A1%E5%99%A8%E7%8E%AF%E5%A2%83%E9%85%8D%E7%BD%AEubuntu-1080ti-cuda-cudnn)
~$ conda install theano==0.9.0 pygpu==0.6.4
会出现以下信息:
回车安装好。
注意需要修改cudnn版本为5.1 这与tensorflow-gpu环境安装的cudnn版本不一致
解压cudnn-8.0-linux-x64-v5.1.tgz*后一共有5个文件,需要拷贝到对应lib64,include目录下
min@server-11:/home/bigdata/download$ tar xvf cudnn-8.0-linux-x64-v6.0.tgz -C /home/vitamin/software
cuda/include/cudnn.h
cuda/lib64/libcudnn.so
cuda/lib64/libcudnn.so.5
cuda/lib64/libcudnn.so.5.1.10
cuda/lib64/libcudnn_static.a
修改配置文件:vim .bashrc
添加以下行
1 export LD_LIBRARY_PATH=/home/vitamin/software/include:/home/vitamin/software/extras/CUPTI/lib64:/hom e/vitamin/software/lib64:$LD_LIBRARY_PATH
122
# add for install theano gpu env
export MKL_THREADING_LAYER=GNU
export LIBRARY_PATH=/home/vitamin/software/lib64
修改配置文件vim .theanorc
[global]
floatX = float64
device = cuda
[cuda]
root = /home/vitamin/cuda-8.0
tensorflow下载链接
下载Anaconda5.0.1
下载cuda8.0
下载cudnn6.0(注册后同意协议)
tensorflow安装官方指南
深度学习服务器环境配置过程详细版
从零开始配置你的深度学习服务器+踩坑经验
深度学习主机环境配置: Ubuntu16.04+Nvidia GTX 1080+CUDA8.0
theano-users问题gpu安装解决
theano安装链接1
theano安链接2