Ubuntu16.04+GPU1080ti深度学习环境配置

本说明旨在在ubuntu16.04的服务器上的普通用户中创建深度学习环境Tensorflow、Theano

目录

    • 1.服务器上创建用户 给用户赋予管理员权限
    • 2.安装cuda
    • 3.安装cudnn
    • 4.安装tensorflow
    • 5.安装基于python3的tensorflow-gpu
    • 6.Jupyter notebook远程访问服务器
      • 6.1配置步骤
      • 6.2 手动注册Jupyter notebook的ipython运行核
        • 6.2.1 anaconda2安装了python3环境:
        • 6.2.2 anconda3安装了python2环境:
      • 6.3.conda环境管理
    • 7.使用localhost访问远程tensorboard
    • 8.调节显示器分辨率
    • 9.安装theano+GPU加速环境
      • 9.1 安装theano+pygpu指定版本
    • 10.相关软件下载链接
    • 11.参考链接

1.服务器上创建用户 给用户赋予管理员权限

系统管理员用户:
$sudo adduser vitamin

使用如下命令可以添加到用户组(超级用户组)。
添加管理员权限:
$sudo usermod -aG sudo vitmain 
其中a:表示添加,G:指定组名

从用户组中删除指定用户:
sudo usermod -G 用户组名  username
把vitamin用户添加到组1和组2
sudo usermod -G 组1  -G 组2 vitamin

其中 -G 表示:加到组1 和 组2,可以添加到多个组,当然也可以是一个组。

        -G的含义是把用户添加到指定的用户组,但是会自动从其他组中删除。

        -a的含义是追加,但不会从其他组中删除。
另外还有修改/etc/sudoers文件的方法。
~#mkdir sotfware
~#cd sotfware
~/sotfware # mkdir cuda

2.安装cuda

运行下载的安装包
sh cuda_8.0.61_375.26_linux.run.26_linux-run

输入:q 退出阅读EULA

输入:accept
Do you accept the previously read EULA?
accept/decline/quit: accept

输入:n ;因为之前安装的gpu驱动器版本高。
Install NVIDIA Accelerated Graphics Driver for Linux-x86_64 375.26?
(y)es/(n)o/(q)uit: n

输入:y ;
Install the CUDA 8.0 Toolkit?
(y)es/(n)o/(q)uit: y

输入:安装目录;
Enter Toolkit Location
 [ default is /usr/local/cuda-8.0 ]: /home/vitamin/software/cuda

输入:n;不安装符号链接
Do you want to install a symbolic link at /usr/local/cuda?
(y)es/(n)o/(q)uit: n

输入:y;安装cuda8.0 samples
Install the CUDA 8.0 Samples?
(y)es/(n)o/(q)uit: y

Enter CUDA Samples Location
 [ default is /home/vitamin ]: /home/vitamin
修改配置文件.bashrc
export PATH=/home/vitamin/software/cuda/bin:$PATH
export LD_LIBRARY_PATH=/home/vitamin/software/cuda/lib64:$LD_LIBRARY_PATH

使得.bashrc生效
source .bashrc

测试cuda:
进入测试目录:
cd /home/vitamin/NVIDIA_CUDA-8.0_Samples/1_Utilities/deviceQuery
编译:
make -j4
运行:
./deviceQuery
输出:结果中有Result = PASS 表示安装成功
deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 9.1, CUDA Runtime Version = 8.0, NumDevs = 2, Device0 = GeForce GTX 1080 Ti, Device1 = GeForce GTX 1080 Ti
Result = PASS

3.安装cudnn

解压cudnn-8.0-linux-x64-v6.0.tgz后一共有5个文件,需要拷贝到对应lib64,include目录下

min@server-11:/home/bigdata/download$ tar xvf cudnn-8.0-linux-x64-v6.0.tgz -C /home/min/software
cuda/include/cudnn.h
cuda/lib64/libcudnn.so
cuda/lib64/libcudnn.so.6
cuda/lib64/libcudnn.so.6.0.21
cuda/lib64/libcudnn_static.a

4.安装tensorflow

进入:Anaconda2-5.0.1-Linux-x86_64.sh 目录 执行
# sh Anaconda2-5.0.1-Linux-x86_64.sh
# yes
# enter

重新打开一个终端安装tensorflow-gpu
pip install tensorflow-gpu==1.4.1

5.安装基于python3的tensorflow-gpu

在Ancoanda2中安装python3.5环境
# conda create -n py3 python=3.5
激活py3环境
# source activate py3
安装tensorflow-gpu1.4.1
(py3)# pip install tensorflow-gpu==1.4.1

由于国内https://storage.googleapis.com 无法访问,故运行

pip install --upgrade https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.4.0-cp34-cp34m-linux_x86_64.whl

会提示安装失败!

6.Jupyter notebook远程访问服务器

6.1配置步骤

1.生成配置文件:
$jupyter notebook --generate-config
2.生成密码:
打开python终端
In [1]: from IPython.lib import passwd

In [2]: passwd()
Enter password: 
Verify password: 
Out[2]: 'sha1:xxxxxxxxxxxxxx'
3.修改配置文件:
vim ~/.jupyter/jupyter_notebook_config.py 
在配置文件中加入以下内容:
c.NotebookApp.ip='*'
c.NotebookApp.password = u'sha1:414040d3d9a2:897ca67086f86d84f82333224ec97ade98b533ba'
c.NotebookApp.open_browser = False
c.NotebookApp.port =18888 
c.IPKernelApp.pylab = 'inline'
4.启动Jupyter notebook
在当前用户目录下启动jupyter notebook
$cd ~
~$nohup jupyter notebook &

例如:
vitamin@server-11:~$ nohup jupyter notebook &
[2] 12327
vitamin@server-11:~$ nohup: 忽略输入并把输出追加到'nohup.out'

vitamin@server-11:~$ 
停止jupyter notebook服务器后台运行:
查看正在执行的python进程:
~#ps -ef | grep python
min 31598 31342  0 09:16 pts/8    00:00:01 /home/min/anaconda2/bin/python
~#kill -9 31598【pid】

6.2 手动注册Jupyter notebook的ipython运行核

6.2.1 anaconda2安装了python3环境:

# 一般通过以下这条命令安装python3.6环境
# conda create -n py36 python=3.6
启动 python3环境:
~# source activate py36
通过以下两步注册ipython运行核:
【py36】~# conda install notebook ipykernel
【py36】~# ipython kernel install --user
【py36】~#source deactivate py36
~#jupyter notebook

6.2.2 anconda3安装了python2环境:

# 一般通过以下这条命令安装python3.6环境
# conda create -n py27 python=2.7
~#source activate py27
【py27】~#conda install notebook ipykernel
【py27】~#ipython kernel install --user
【py27】~#source deactivate py27
~#jupyter notebook

6.3.conda环境管理

conda环境查看
多环境注册:
kernel注册目录查看

(py3) ~: ipython kernel install --user --name python36 --display-name "python36"
一定要注意 :加 name;并去对应的目录看看;

7.使用localhost访问远程tensorboard

1.在服务器上使用端口6006启动tensorboard
用户名@服务器:~# tensorboard --logdir=你的日志文件 --port=6006
2.连接ssh时,将服务器的6006端口重定向到自己机器上来
用户名@本地机器:~# ssh -L 16006:127.0.0.1:6006 username@remote_server_ip -p your_sshport
3.在本地浏览器中输入以下地址
用户名@机器:~# tensorboard --logdir=你的日志文件 --port=6006
127.0.0.1:16006

8.调节显示器分辨率

方法一:修改grup配置文件
sudo vim /etc/default/grub

# The resolution used on graphical terminal
# note that you can use only modes which your graphic card supports via VBE
# you can see them in real GRUB with the command `vbeinfo'
#GRUB_GFXMODE=640x480
# 这里分辨率自行设置

修改这行:
GRUB_GFXMODE=1024x768

更新:
sudo update-grub

方法二:
设置一下source源和pip源
cd /etc/apt/
sudo cp sources.list sources.list.bak
sudo vi sources.list
加入文件:
deb-src http://archive.ubuntu.com/ubuntu xenial main restricted #Added by software-properties
deb http://mirrors.aliyun.com/ubuntu/ xenial main restricted
deb-src http://mirrors.aliyun.com/ubuntu/ xenial main restricted multiverse universe #Added by software-properties
deb http://mirrors.aliyun.com/ubuntu/ xenial-updates main restricted
deb-src http://mirrors.aliyun.com/ubuntu/ xenial-updates main restricted multiverse universe #Added by software-properties
deb http://mirrors.aliyun.com/ubuntu/ xenial universe
deb http://mirrors.aliyun.com/ubuntu/ xenial-updates universe
deb http://mirrors.aliyun.com/ubuntu/ xenial multiverse
deb http://mirrors.aliyun.com/ubuntu/ xenial-updates multiverse
deb http://mirrors.aliyun.com/ubuntu/ xenial-backports main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ xenial-backports main restricted universe multiverse #Added by software-properties
deb http://archive.canonical.com/ubuntu xenial partner
deb-src http://archive.canonical.com/ubuntu xenial partner
deb http://mirrors.aliyun.com/ubuntu/ xenial-security main restricted
deb-src http://mirrors.aliyun.com/ubuntu/ xenial-security main restricted multiverse universe #Added by software-properties
deb http://mirrors.aliyun.com/ubuntu/ xenial-security universe
deb http://mirrors.aliyun.com/ubuntu/ xenial-security multiverse

最后更新一下:

sudo apt-get update
sudo apt-get upgrade
安装1080TI显卡驱动:
sudo apt-get purge nvidia*
sudo add-apt-repository ppa:graphics-drivers/ppa
sudo apt-get update && sudo apt-get install nvidia-384 nvidia-settings
安装完毕后重启机器,运行 nvidia-smi,看看生效的显卡驱动:
会有显卡驱动信息详细显示
![会有显卡驱动信息详细显示](http://www.52nlp.cn/%E4%BB%8E%E9%9B%B6%E5%BC%80%E5%A7%8B%E6%90%AD%E5%BB%BA%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0%E6%9C%8D%E5%8A%A1%E5%99%A8%E7%8E%AF%E5%A2%83%E9%85%8D%E7%BD%AEubuntu-1080ti-cuda-cudnn)

9.安装theano+GPU加速环境

9.1 安装theano+pygpu指定版本

~$ conda install theano==0.9.0 pygpu==0.6.4

会出现以下信息:
Ubuntu16.04+GPU1080ti深度学习环境配置_第1张图片
回车安装好。
注意需要修改cudnn版本为5.1 这与tensorflow-gpu环境安装的cudnn版本不一致
解压cudnn-8.0-linux-x64-v5.1.tgz*后一共有5个文件,需要拷贝到对应lib64,include目录下

min@server-11:/home/bigdata/download$ tar xvf cudnn-8.0-linux-x64-v6.0.tgz -C /home/vitamin/software
cuda/include/cudnn.h
cuda/lib64/libcudnn.so
cuda/lib64/libcudnn.so.5
cuda/lib64/libcudnn.so.5.1.10
cuda/lib64/libcudnn_static.a

修改配置文件:vim .bashrc

添加以下行
1 export LD_LIBRARY_PATH=/home/vitamin/software/include:/home/vitamin/software/extras/CUPTI/lib64:/hom    e/vitamin/software/lib64:$LD_LIBRARY_PATH
122 
# add for install theano gpu env
export MKL_THREADING_LAYER=GNU
export LIBRARY_PATH=/home/vitamin/software/lib64

修改配置文件vim .theanorc

[global]
floatX = float64
device = cuda

[cuda]
root = /home/vitamin/cuda-8.0

10.相关软件下载链接

tensorflow下载链接
下载Anaconda5.0.1
下载cuda8.0
下载cudnn6.0(注册后同意协议)

11.参考链接

tensorflow安装官方指南
深度学习服务器环境配置过程详细版
从零开始配置你的深度学习服务器+踩坑经验
深度学习主机环境配置: Ubuntu16.04+Nvidia GTX 1080+CUDA8.0

theano-users问题gpu安装解决
theano安装链接1
theano安链接2

你可能感兴趣的:(项目实践,深度学习,tensorflow,theano)